Fan-Type Conditions for Spanning Eulerian Subgraphs

For a graph $$G$$G, let $$\delta _F(G)=\min \{\max \{d(u), d(v)\} | \text{ for } \text{ any }~u, v\in V(G)\, \text{ with } \text{ distance }~2\}$$δF(G)=min{max{d(u),d(v)}|foranyu,v∈V(G)withdistance2}. A graph is supereulerian if it has a spanning Eulerian subgraph. Let $$p>0$$p>0, $$g>2$$g>2 and $$\epsilon $$ϵ be given nonnegative numbers. Let $$\mathcal{Q}$$Q be the family of non-supereulerian graphs with order at most $$5(p-2)$$5(p-2). In this paper, we prove that for a 3-edge-connected graph $$G$$G of order $$n$$n, if $$G$$G satisfies a Fan-type condition $$\delta _F(G)\ge \frac{n}{(g-2)p}-\epsilon $$δF(G)≥n(g-2)p-ϵ and $$n$$n is sufficiently large, then $$G$$G is supereulerian if and only if $$G$$G is not contractible to a graph in $$\mathcal{Q}$$Q. Results on best possible values of $$p$$p and $$\epsilon $$ϵ for such graphs to either be supereulerian or be contractible to the Petersen graph are given.

[1]  Blanche Descartes,et al.  Review: J. A. Bondy and U. S. R. Murty, Graph theory with applications , 1977 .

[2]  Paul A. Catlin,et al.  A reduction method to find spanning Eulerian subgraphs , 1988, J. Graph Theory.

[3]  Zhi-Hong Chen Fan-Type Conditions for Collapsible Graphs , 1998, Ars Comb..

[4]  Zhi-Hong Chen,et al.  Spanning Eulerian subgraphs and Catlin’s reduced graphs , 2016 .

[5]  Zhi-Hong Chen A degree condition for spanning eulerian subgraphs , 1993, J. Graph Theory.

[6]  H. Lai,et al.  Supereulerian graphs and the Petersen graph , 2014 .

[7]  J. E. Williamson,et al.  On Spanning and Dominating Circuits in Graphs , 1977, Canadian Mathematical Bulletin.

[8]  Henk Jan Veldman On dominating and spanning circuits in graphs , 1994, Discret. Math..

[9]  Geng-Hua Fan,et al.  New sufficient conditions for cycles in graphs , 1984, J. Comb. Theory, Ser. B.

[10]  Zhi-Hong Chen Supereuleriaun graphs and the Petersen graph , 1991 .

[11]  Hong-Jian Lai,et al.  Graphs without spanning closed trails , 1996, Discret. Math..

[12]  Zhi-Hong Chen Supereulerian graphs, independent sets, and degree-sum conditions , 1998, Discret. Math..

[13]  Hong-Jian Lai Eulerian subgraphs containing given vertices and hamiltonian line graphs , 1998, Discret. Math..

[14]  Paul A. Catlin Contractions of graphs with no spanning eulerian subgraphs , 1988, Comb..

[15]  William R. Pulleyblank,et al.  A note on graphs spanned by Eulerian graphs , 1979, J. Graph Theory.

[16]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[17]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[18]  Hong-Jian Lai,et al.  Collapsible graphs and matchings , 1993, J. Graph Theory.