Variation and Evolution of Human Centromeres: A Field Guide and Perspective

We are entering a new era in genomics where entire centromeric regions are accurately represented in human reference assemblies. Access to these high-resolution maps will enable new surveys of sequence and epigenetic variation in the population and offer new insight into satellite array genomics and centromere function. Here, we focus on the sequence organization and evolution of alpha satellites, which are credited as the genetic and genomic definition of human centromeres due to their interaction with inner kinetochore proteins and their importance in the development of human artificial chromosome assays. We provide an overview of alpha satellite repeat structure and array organization in the context of these high-quality reference data sets; discuss the emergence of variation-based surveys; and provide perspective on the role of this new source of genetic and epigenetic variation in the context of chromosome biology, genome instability, and human disease.

[1]  Aaron M. Streets,et al.  Complete genomic and epigenetic maps of human centromeres , 2021, bioRxiv.

[2]  Mitchell R. Vollger,et al.  From telomere to telomere: the transcriptional and epigenetic state of human repeat elements , 2021, bioRxiv.

[3]  Pavel A. Pevzner,et al.  CentromereArchitect: inference and analysis of the architecture of centromeres , 2021, Bioinform..

[4]  Jullien M. Flynn,et al.  Copy number evolution in simple and complex tandem repeats across the C57BL/6 and C57BL/10 inbred mouse lines , 2021, bioRxiv.

[5]  L. Jansen,et al.  Induction of spontaneous human neocentromere formation and long-term maturation , 2021, The Journal of cell biology.

[6]  William T. Harvey,et al.  The structure, function and evolution of a complete human chromosome 8 , 2020, Nature.

[7]  A. Scelfo,et al.  CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy , 2020, Proceedings of the National Academy of Sciences.

[8]  Monika Cechova Probably Correct: Rescuing Repeats with Short and Long Reads , 2020, Genes.

[9]  E. Myers,et al.  Rapid and ongoing evolution of repetitive sequence structures in human centromeres , 2020, Science Advances.

[10]  Shannon M. McNulty,et al.  A genetic memory initiates the epigenetic loop necessary to preserve centromere position , 2020, The EMBO journal.

[11]  Simona Giunta,et al.  Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function , 2020, Genes.

[12]  P. Pevzner,et al.  Automated assembly of centromeres from ultra-long error-prone reads , 2020, Nature Biotechnology.

[13]  Pavel A Pevzner,et al.  TandemTools: mapping long reads and assessing/improving assembly quality in extra-long tandem repeats , 2020, Bioinform..

[14]  Pavel A Pevzner,et al.  The string decomposition problem and its applications to centromere analysis and assembly , 2020, Bioinform..

[15]  Karen H. Miga,et al.  Centromere studies in the era of 'telomere-to-telomere' genomics. , 2020, Experimental cell research.

[16]  Mridula Nambiar,et al.  New Solutions to Old Problems: Molecular Mechanisms of Meiotic Crossover Control. , 2020, Trends in genetics : TIG.

[17]  Karen H. Miga,et al.  Alpha-satellite RNA transcripts are repressed by centromere-nucleolus associations , 2020, bioRxiv.

[18]  Sergey Koren,et al.  HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads , 2020, bioRxiv.

[19]  B. Sullivan,et al.  Genomic and functional variation of human centromeres. , 2020, Experimental cell research.

[20]  J. Simpson,et al.  Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing , 2018, bioRxiv.

[21]  Karen H. Miga,et al.  Human chromosome‐specific aneuploidy is influenced by DNA‐dependent centromeric features , 2019, The EMBO journal.

[22]  Julie M. Behr,et al.  Nanopore sequencing of DNA concatemers reveals higher-order features of chromatin structure , 2019, bioRxiv.

[23]  B. Klaholz,et al.  CENP-A nucleosome clusters form rosette-like structures around HJURP during G1 , 2019, Nature Communications.

[24]  Sergey Koren,et al.  Telomere-to-telomere assembly of a complete human X chromosome , 2019, bioRxiv.

[25]  W. Rice A Game of Thrones at Human Centromeres II. A new molecular/evolutionary model , 2019, bioRxiv.

[26]  A. Scelfo,et al.  Keeping the Centromere under Control: A Promising Role for DNA Methylation , 2019, Cells.

[27]  Sergey Koren,et al.  Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome , 2019, Nature Biotechnology.

[28]  Jullien M. Flynn,et al.  Evolutionary dynamics of abundant 7 bp satellites in the genome of Drosophila virilis , 2019, bioRxiv.

[29]  Karen H. Miga,et al.  DNA replication acts as an error correction mechanism to maintain centromere identity by restricting CENP-A to centromeres , 2019, Nature Cell Biology.

[30]  Karen H. Miga,et al.  Centromeric Satellite DNAs: Hidden Sequence Variation in the Human Population , 2019, Genes.

[31]  Carolin A. Müller,et al.  Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads , 2018, Nature Methods.

[32]  E. Rogaev,et al.  Classification and monomer-by-monomer annotation dataset of suprachromosomal family 1 alpha satellite higher-order repeats in hg38 human genome assembly , 2019, Data in brief.

[33]  R. O’Neill,et al.  Centromere Repeats: Hidden Gems of the Genome , 2019, Genes.

[34]  Angela N. Brooks,et al.  Nanopore native RNA sequencing of a human poly(A) transcriptome , 2018, bioRxiv.

[35]  V. Barra,et al.  The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA , 2018, Nature Communications.

[36]  Samuel F. Bakhoum,et al.  Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations , 2018, Nature.

[37]  Shannon M. McNulty,et al.  Alpha satellite DNA biology: finding function in the recesses of the genome , 2018, Chromosome Research.

[38]  Karen H. Miga,et al.  Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA , 2018, bioRxiv.

[39]  Harmit S. Malik,et al.  The cellular mechanisms and consequences of centromere drive. , 2018, Current opinion in cell biology.

[40]  David Haussler,et al.  Linear assembly of a human centromere on the Y chromosome , 2018, Nature Biotechnology.

[41]  Brent S. Pedersen,et al.  Nanopore sequencing and assembly of a human genome with ultra-long reads , 2017, Nature Biotechnology.

[42]  B. E. Black,et al.  Cellular and Molecular Mechanisms of Centromere Drive , 2018, Cold Spring Harbor symposia on quantitative biology.

[43]  Karen H. Miga,et al.  Human centromeric CENP-A chromatin is a homotypic, octameric nucleosome at all cell cycle points , 2017, The Journal of cell biology.

[44]  H. Funabiki,et al.  Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T , 2017, Proceedings of the National Academy of Sciences.

[45]  M. E. Aldrup-MacDonald,et al.  Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles , 2016, Genome research.

[46]  Ali Bashir,et al.  Alpha-CENTAURI: assessing novel centromeric repeat sequence variation with long read sequencing , 2016, Bioinform..

[47]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[48]  Karen H. Miga,et al.  Utilizing mapping targets of sequences underrepresented in the reference assembly to reduce false positive alignments , 2015, Nucleic acids research.

[49]  E. Rogaev,et al.  Annotation of suprachromosomal families reveals uncommon types of alpha satellite organization in pericentromeric regions of hg38 human genome assembly , 2015, Genomics data.

[50]  A. Clark,et al.  Correlated variation and population differentiation in satellite DNA abundance among lines of Drosophila melanogaster , 2014, Proceedings of the National Academy of Sciences.

[51]  Karen H. Miga,et al.  Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome , 2014, Nucleic acids research.

[52]  W. Earnshaw,et al.  The Centromere: Chromatin Foundation for the Kinetochore Machinery , 2014, Developmental cell.

[53]  Sergey A. Shiryev,et al.  Single haplotype assembly of the human genome from a hydatidiform mole , 2014, bioRxiv.

[54]  Mauro Maggioni,et al.  Genomic Characterization of Large Heterochromatic Gaps in the Human Genome Assembly , 2014, PLoS Comput. Biol..

[55]  Nicolas Altemose,et al.  Centromere reference models for human chromosomes X and Y satellite arrays , 2013, Genome research.

[56]  Sudarath Baicharoen,et al.  In situ hybridization analysis of gibbon chromosomes suggests that amplification of alpha satellite DNA in the telomere region is confined to two of the four genera. , 2012, Genome.

[57]  Kristin A. Maloney,et al.  Functional epialleles at an endogenous human centromere , 2012, Proceedings of the National Academy of Sciences.

[58]  B. Sullivan,et al.  Dicentric chromosomes: unique models to study centromere function and inactivation , 2012, Chromosome Research.

[59]  A. Koga,et al.  Repetitive sequences originating from the centromere constitute large-scale heterochromatin in the telomere region in the siamang, a small ape , 2012, Heredity.

[60]  V. Tonk,et al.  Human Chromosome Variation: Heteromorphism and Polymorphism , 2011, Springer Netherlands.

[61]  Fred H. Gage,et al.  BRCA1 tumor suppression occurs via heterochromatin mediated silencing , 2011, Nature.

[62]  H. Willard,et al.  Organization and Molecular Evolution of CENP-A–Associated Satellite DNA Families in a Basal Primate Genome , 2011, Genome biology and evolution.

[63]  A. Iafrate,et al.  Aberrant Overexpression of Satellite Repeats in Pancreatic and Other Epithelial Cancers , 2011, Science.

[64]  E. Green,et al.  Adaptive evolution of foundation kinetochore proteins in primates. , 2010, Molecular biology and evolution.

[65]  A. Alexandrov,et al.  The Evolutionary Origin of Man Can Be Traced in the Layers of Defunct Ancestral Alpha Satellites Flanking the Active Centromeres of Human Chromosomes , 2009, PLoS genetics.

[66]  E. Eichler,et al.  New insights into centromere organization and evolution from the white-cheeked gibbon and marmoset. , 2009, Molecular biology and evolution.

[67]  Arpiar Saunders,et al.  Centromere-Associated Female Meiotic Drive Entails Male Fitness Costs in Monkeyflowers , 2008, Science.

[68]  Timothy B. Stockwell,et al.  The Diploid Genome Sequence of an Individual Human , 2007, PLoS biology.

[69]  Süleyman Cenk Sahinalp,et al.  Organization and Evolution of Primate Centromeric DNA from Whole-Genome Shotgun Sequence Data , 2007, PLoS Comput. Biol..

[70]  Carlos D Bustamante,et al.  Localizing Recent Adaptive Evolution in the Human Genome , 2007, PLoS genetics.

[71]  P. D. de Jong,et al.  BAC clones generated from sheared DNA. , 2007, Genomics.

[72]  N. Pavin,et al.  CENP-B box and pJα sequence distribution in human alpha satellite higher-order repeats (HOR) , 2006, Chromosome Research.

[73]  Stéphane Boissinot,et al.  Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. , 2005, Genome research.

[74]  David Reich,et al.  A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility , 2005, Nature Genetics.

[75]  Huntington F Willard,et al.  Progressive proximal expansion of the primate X chromosome centromere. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Huntington F. Willard,et al.  Chromosome-specific subsets of human alpha satellite DNA: Analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat , 2005, Journal of Molecular Evolution.

[77]  H. Willard,et al.  Analysis of the centromeric regions of the human genome assembly. , 2004, Trends in genetics : TIG.

[78]  J. Bonfield,et al.  Finishing the euchromatic sequence of the human genome , 2004, Nature.

[79]  D. Haussler,et al.  The structure and evolution of centromeric transition regions within the human genome , 2004, Nature.

[80]  D. Ward,et al.  Presence and abundance of CENP-B box sequences in great ape subsets of primate-specific α-satellite DNA , 1995, Journal of Molecular Evolution.

[81]  Y. Yurov,et al.  Application of cloned satellite DNA sequences to molecular-cytogenetic analysis of constitutive heterochromatin heteromorphisms in man , 1987, Human Genetics.

[82]  Y. Yurov,et al.  The phylogeny of human chromosome specific alpha satellites , 2004, Chromosoma.

[83]  A. Alexandrov,et al.  Interspersed repeats are found predominantly in the “old” α satellite families , 2003 .

[84]  D. Schindelhauer,et al.  Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous alpha-satellite DNA array. , 2002, Genome research.

[85]  Gary H Karpen,et al.  Conserved organization of centromeric chromatin in flies and humans. , 2002, Developmental cell.

[86]  E. Winzeler,et al.  Genomic and Genetic Definition of a Functional Human Centromere , 2001, Science.

[87]  Valery Shepelev,et al.  Alpha-satellite DNA of primates: old and new families , 2001, Chromosoma.

[88]  S. Henikoff,et al.  Adaptive evolution of Cid, a centromere-specific histone in Drosophila. , 2001, Genetics.

[89]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[90]  H. Willard,et al.  Stable dicentric X chromosomes with two functional centromeres , 1998, Nature Genetics.

[91]  C. Groves,et al.  Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. , 1998, Molecular phylogenetics and evolution.

[92]  H. Willard,et al.  Physical and genetic mapping of the human X chromosome centromere: repression of recombination. , 1998, Genome research.

[93]  A. Mushegian,et al.  Evidence for selection in evolution of alpha satellite DNA: the central role of CENP-B/pJ alpha binding region. , 1996, Journal of molecular biology.

[94]  K. Choo,et al.  A novel nuclear protein binds centromeric alpha satellite DNA. , 1994, Human molecular genetics.

[95]  W Stephan,et al.  Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. , 1994, Genetics.

[96]  H. Masumoto,et al.  Properties of CENP-B and Its Target Sequence in a Satellite DNA , 1993 .

[97]  L. Romanova,et al.  Definition of a new alpha satellite suprachromosomal family characterized by monomeric organization. , 1993, Nucleic acids research.

[98]  M. Wagner,et al.  Sequence, higher order repeat structure, and long-range organization of alpha satellite DNA specific to human chromosome 8. , 1992, Genomics.

[99]  H. Willard,et al.  Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. , 1991, Nucleic acids research.

[100]  H. Willard,et al.  Pulsed-field gel analysis of alpha-satellite DNA at the human X chromosome centromere: high-frequency polymorphisms and array size estimate. , 1990, Genomics.

[101]  H. Willard,et al.  Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[102]  H. Willard,et al.  Patterns of intra- and interarray sequence variation in alpha satellite from the human X chromosome: evidence for short-range homogenization of tandemly repeated DNA sequences. , 1989, Genomics.

[103]  H. Masumoto,et al.  A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite , 1989, The Journal of cell biology.

[104]  W. Stephan Tandem-repetitive noncoding DNA: forms and forces. , 1989, Molecular biology and evolution.

[105]  Huntington F. Willard,et al.  Hierarchical order in chromosome-specific human alpha satellite DNA , 1987 .

[106]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[107]  H. Willard,et al.  Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. , 1985, Nucleic acids research.

[108]  H. Willard Chromosome-specific organization of human alpha satellite DNA. , 1985, American journal of human genetics.

[109]  M. Singer Highly repeated sequences in mammalian genomes. , 1982, International review of cytology.

[110]  L. Manuelidis,et al.  Homology between human and simian repeated DNA , 1978, Nature.

[111]  J. Ford,et al.  Chromosomal variants and nondisjunction. , 1978, Cytogenetics and Cell Genetics.

[112]  D. Brutlag,et al.  Cloning and characterization of a complex satellite DNA from drosophila melanogaster , 1977, Cell.

[113]  L. Manuelidis Repeating restriction fragments of human DNA. , 1976, Nucleic acids research.

[114]  G. P. Smith,et al.  Evolution of repeated DNA sequences by unequal crossover. , 1976, Science.

[115]  K. Mather Crossing over and Heterochromatin in the X Chromosome of Drosophila Melanogaster. , 1939, Genetics.

[116]  G. Beadle A Possible Influence of the Spindle Fibre on Crossing-Over in Drosophila. , 1932, Proceedings of the National Academy of Sciences of the United States of America.