QCA-Based RAM Design Using a Resilient Reversible Gate with Improved Performance

Reversible logic and Quantum dot cellular automata are the prospective pillars of quantum computing. These paradigms can potentially reduce the size and power of the future chips while simultaneous...

[1]  Zsolt Pirger,et al.  Neurochemical changes in different brain regions induced by PACAP - relations to neuroprotection , 2015, SpringerPlus.

[2]  Nima Jafari Navimipour,et al.  Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology , 2019, Optik.

[3]  Yuhui Lu,et al.  Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling , 2006, Nanotechnology.

[4]  Keivan Navi,et al.  A Novel Fault Tolerant Reversible Gate For Nanotechnology Based Systems , 2008 .

[5]  R. Sabbaghi‐Nadooshan,et al.  A novel QCA implementation of MUX-based universal shift register , 2014 .

[6]  Mohammad Hossein Moaiyeri,et al.  Efficient and Robust SRAM Cell Design Based on Quantum-Dot Cellular Automata , 2018 .

[7]  Umesh Ghanekar,et al.  Design of QCA-Based D Flip Flop and Memory Cell Using Rotated Majority Gate , 2018, Smart Innovations in Communication and Computational Sciences.

[8]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[9]  Keivan Navi,et al.  Design and Verification of New n-Bit Quantum-Dot Synchronous Counters Using Majority Function-Based JK Flip-Flops , 2015, J. Circuits Syst. Comput..

[10]  N. Ranganathan,et al.  Design of Testable Reversible Sequential Circuits , 2013, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[11]  Bibhash Sen,et al.  Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing , 2014, Microelectron. J..

[12]  Keivan Navi,et al.  Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata , 2015, Microelectron. J..

[13]  C. Lent,et al.  Fanout gate in quantum-dot cellular automata , 2007 .

[14]  Abbas Vafaei,et al.  Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata , 2011, Microelectron. J..

[15]  Y. Zou,et al.  Avoiding sealing failure of flanged connection for tubes made of dissimilar materials subjected to elevated temperature , 2019, Nuclear Science and Techniques.

[16]  Nima Jafari Navimipour,et al.  Memory Designing Using Quantum-Dot Cellular Automata: Systematic Literature Review, Classification and Current Trends , 2017, J. Circuits Syst. Comput..

[17]  Fabrizio Lombardi,et al.  HDLQ: A HDL environment for QCA design , 2006, JETC.

[18]  Sajjad Waheed,et al.  A new approach of presenting reversible logic gate in nanoscale , 2015, SpringerPlus.

[19]  Ronald F. DeMara,et al.  A Parity-Preserving Reversible QCA Gate with Self-Checking Cascadable Resiliency , 2018, IEEE Transactions on Emerging Topics in Computing.

[20]  Keivan Navi,et al.  An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata , 2017 .

[21]  F. Lombardi,et al.  Testing of quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[22]  Bibhash Sen,et al.  Modular Design of testable reversible ALU by QCA multiplexer with increase in programmability , 2014, Microelectron. J..

[23]  Keivan Navi,et al.  Towards ultra-efficient QCA reversible circuits , 2017, Microprocess. Microsystems.

[24]  Sankit R. Kassa,et al.  An Innovative Low Power Full Adder Design in Nano Technology Based Quantum Dot Cellular Automata , 2016, J. Low Power Electron..

[25]  Wolfgang Porod,et al.  Quantum-dot cellular automata : computing with coupled quantum dots , 1999 .

[26]  Gurmohan Singh,et al.  Design and analysis of area efficient QCA based reversible logic gates , 2017, Microprocess. Microsystems.

[27]  Nima Jafari Navimipour,et al.  Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata , 2018, Nano Commun. Networks.

[28]  Nagarjuna Telagam,et al.  Shannon Logic Based Novel QCA Full Adder Design with Energy Dissipation Analysis , 2018 .

[29]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[30]  Milad Sangsefidi,et al.  High speed and low cost synchronous counter design in quantum-dot cellular automata , 2018, Microelectron. J..

[31]  Sajjad Waheed,et al.  A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis , 2017 .

[32]  A. Zakerolhosseini,et al.  A novel QCA multiplexer design , 2008, 2008 International Symposium on Telecommunications.

[33]  Radhouane Laajimi,et al.  Toward Efficient Design of Flip-flops in Quantum-Dot Cellular Automata with Power Dissipation Analysis , 2018 .

[34]  Lu Chen,et al.  Design of High Efficiency Linear Power Amplifier with a Continuous Broadband Based on Two-Tone Signal Analysis , 2019, J. Circuits Syst. Comput..

[35]  Keivan Navi,et al.  New robust QCA D flip flop and memory structures , 2012, Microelectron. J..

[36]  D. Roy,et al.  An Alkaline Slurry Design for Co-Cu CMP Systems Evaluated in the Tribo-Electrochemical Approach , 2018 .

[37]  G.A. Jullien,et al.  A method of majority logic reduction for quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[38]  Ashutosh Kumar Singh,et al.  Efficient Design of Reversible Logic ALU Using Coplanar Quantum-Dot Cellular Automata , 2018, J. Circuits Syst. Comput..

[39]  Shuming Chen,et al.  Comparison of D-flip-flops and D-latches: influence on SET susceptibility of the clock distribution network , 2019, Nuclear Science and Techniques.

[40]  Lei Wang,et al.  Novel designs of full adder in quantum-dot cellular automata technology , 2018, The Journal of Supercomputing.

[41]  Nima Jafari Navimipour,et al.  Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata , 2018, Photonic Network Communications.