Finding strong lenses in CFHTLS using convolutional neural networks

We train and apply convolutional neural networks, a machine learning technique developed to learn from and classify image data, to Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging for the identification of potential strong lensing systems. An ensemble of four convolutional neural networks was trained on images of simulated galaxy-galaxy lenses. The training sets consisted of a total of 62,406 simulated lenses and 64,673 non-lens negative examples generated with two different methodologies. The networks were able to learn the features of simulated lenses with accuracy of up to 99.8% and a purity and completeness of 94-100% on a test set of 2000 simulations. An ensemble of trained networks was applied to all of the 171 square degrees of the CFHTLS wide field image data, identifying 18,861 candidates including 63 known and 139 other potential lens candidates. A second search of 1.4 million early type galaxies selected from the survey catalog as potential deflectors, identified 2,465 candidates including 117 previously known lens candidates, 29 confirmed lenses/high-quality lens candidates, 266 novel probable or potential lenses and 2097 candidates we classify as false positives. For the catalog-based search we estimate a completeness of 21-28% with respect to detectable lenses and a purity of 15%, with a false-positive rate of 1 in 671 images tested. We predict a human astronomer reviewing candidates produced by the system would identify ~20 probable lenses and 100 possible lenses per hour in a sample selected by the robot. Convolutional neural networks are therefore a promising tool for use in the search for lenses in current and forthcoming surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope.

[1]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[2]  P. Marshall,et al.  Chitah: STRONG-GRAVITATIONAL-LENS HUNTER IN IMAGING SURVEYS , 2014, 1411.5398.

[3]  Internal and Collective Properties of Galaxies in the Sloan Digital Sky Survey , 2006, astro-ph/0611607.

[4]  Yves Lechevallier,et al.  Proceedings of COMPSTAT'2010 , 2010 .

[5]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[6]  D. Walsh,et al.  0957 + 561 A, B: twin quasistellar objects or gravitational lens? , 1979, Nature.

[7]  Ce Zhang,et al.  Generative Adversarial Networks recover features in astrophysical images of galaxies beyond the deconvolution limit , 2017, ArXiv.

[8]  C. Keeton Computational Methods for Gravitational Lensing , 2001, astro-ph/0102340.

[9]  P. Hall,et al.  A Systematic Search for High Surface Brightness Giant Arcs in a Sloan Digital Sky Survey Cluster Sample , 2007, astro-ph/0701383.

[10]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[11]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[12]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[13]  T. Collett THE POPULATION OF GALAXY–GALAXY STRONG LENSES IN FORTHCOMING OPTICAL IMAGING SURVEYS , 2015, 1507.02657.

[14]  R. Gavazzi,et al.  Extensive light profile fitting of galaxy-scale strong lenses. Towards an automated lens detection method , 2014, 1411.1265.

[15]  Edwin Simpson,et al.  Space Warps – I. Crowdsourcing the discovery of gravitational lenses , 2015, 1504.06148.

[16]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8 , 2014, 1410.1881.

[17]  R. Nichol,et al.  Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1 , 2017, 1703.08410.

[18]  Ben Hoyle,et al.  Measuring photometric redshifts using galaxy images and Deep Neural Networks , 2015, Astron. Comput..

[19]  G. Meylan,et al.  TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY , 2012, 1208.6010.

[20]  J. Kneib,et al.  The CFHTLS-Strong Lensing Legacy Survey (SL2S): Investigating the group-scale lenses with the SARCS sample , 2011, 1109.1821.

[21]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[22]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[23]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. IV. THE DEPENDENCE OF THE TOTAL MASS DENSITY PROFILE OF EARLY-TYPE GALAXIES ON REDSHIFT, STELLAR MASS, AND SIZE , 2013, 1307.4759.

[24]  Victor L. Krabbendam,et al.  Simulating the LSST system , 2010, Astronomical Telescopes + Instrumentation.

[25]  D. Sluse,et al.  Strong Lensing by Galaxies , 2010, 1003.5567.

[26]  Joachim Wambsganss,et al.  Gravitational Lensing in Astronomy , 1998, Living reviews in relativity.

[27]  T. Treu,et al.  Gravitational Lensing: Einstein’s unfinished symphony , 2015 .

[28]  P. Marshall,et al.  RingFinder: AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN GROUND-BASED MULTI-FILTER IMAGING DATA , 2014, 1403.1041.

[29]  B1422+231: The influence of mass substructure on strong lensing , 2001, astro-ph/0112038.

[30]  M. Auger,et al.  Cosmological constraints from the double source plane lens SDSSJ0946+1006 , 2014, 1403.5278.

[31]  G. Meylan,et al.  H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.

[32]  M. Makler,et al.  A neural network gravitational arc finder based on the Mediatrix filamentation method , 2016, 1607.04644.

[33]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[34]  M. Bernardi,et al.  The luminosity and stellar mass Fundamental Plane of early‐type galaxies , 2008, 0810.4924.

[35]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[36]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  T. Lauer,et al.  A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.

[38]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[39]  Wei Tang,et al.  Ensembling neural networks: Many could be better than all , 2002, Artif. Intell..

[40]  R. Blandford,et al.  Cosmological Applications of Gravitational Lensing , 1992 .

[41]  C. Rusu,et al.  The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses , 2013, 1309.5408.

[42]  Kyler Kuehn,et al.  VDES J2325-5229 a z=2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning , 2016, 1607.01391.

[43]  A. Einstein LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD. , 1936, Science.

[44]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[45]  A. Ealet,et al.  Euclid mission: building of a reference survey , 2012, Other Conferences.

[46]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .

[47]  Automated detection of gravitational arcs , 2006, astro-ph/0606757.

[48]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. XI. BEYOND HUBBLE RESOLUTION: SIZE, LUMINOSITY, AND STELLAR MASS OF COMPACT LENSED GALAXIES AT INTERMEDIATE REDSHIFT , 2011, 1104.2608.

[49]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[50]  T. Schrabback,et al.  AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN HIGH-RESOLUTION IMAGING DATA , 2008, 0805.1469.

[51]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. X. STELLAR, DYNAMICAL, AND TOTAL MASS CORRELATIONS OF MASSIVE EARLY-TYPE GALAXIES , 2010, 1007.2880.

[52]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[53]  Peter Schneider,et al.  Gravitational Lensing: Strong, Weak and Micro , 2006 .

[54]  J. Frieman,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. VI. CONSTRAINTS ON DARK ENERGY AND THE EVOLUTION OF MASSIVE GALAXIES , 2012, 1203.1088.

[55]  J. Sygnet,et al.  A search for edge-on galaxy lenses in the CFHT Legacy Survey , 2010, 1001.4336.

[56]  G. Meylan,et al.  A PCA-based automated finder for galaxy-scale strong lenses , 2014, 1403.1063.

[57]  J. Surdej,et al.  Search for gravitational lens candidates in the XMM-LSS/CFHTLS common field , 2013, 1307.2254.

[58]  N. R. Napolitano,et al.  Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.

[59]  Santiago,et al.  A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING , 2015, 1509.05429.

[60]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[61]  C. Lintott,et al.  Space Warps II. New gravitational lens candidates from the CFHTLS discovered through citizen science , 2015, 1504.05587.

[62]  T. Treu,et al.  Massive Dark Matter Halos and Evolution of Early-Type Galaxies to z ≈ 1 , 2004, astro-ph/0401373.

[63]  M. Pettini,et al.  The ultraviolet spectrum of the gravitationally lensed galaxy ‘the Cosmic Horseshoe’: a close-up of a star-forming galaxy at z∼ 2 , 2009, 0906.2412.

[64]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[65]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[66]  B. Póczos,et al.  CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding , 2017, Monthly Notices of the Royal Astronomical Society.

[67]  Gepi,et al.  The CFHTLS strong lensing legacy survey - I. Survey overview and T0002 release sample , 2006, astro-ph/0610362.

[68]  T. Treu,et al.  The Internal Structure and Formation of Early-Type Galaxies: The Gravitational Lens System MG 2016+112 at z = 1.004 , 2002, astro-ph/0202342.

[69]  B. Flaugher The Dark Energy Survey , 2005 .

[70]  S. Dye,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131−1231 , 2012, 1208.6009.