Computing Normal Form Perfect Equilibria for Extensive Two-Person Games

This paper presents an algorithm for computing an equilibrium of an extensive two-person game with perfect recall. The method is computationally efficient by virtue of using the sequence form, whose size is proportional to the size of the game tree. The equilibrium is traced on a piecewise linear path in the sequence form strategy space from an arbitrary starting vector. If the starting vector represents a pair of completely mixed strategies, then the equilibrium is normal form perfect. Computational experiments compare the sequence form and the reduced normal form, and show that only the sequence form is tractable for larger games.

[1]  B. Stengel,et al.  Efficient Computation of Behavior Strategies , 1996 .

[2]  Dolf Talman,et al.  Linear Stationary Point Problems on Unbounded Polyhedra , 1993, Math. Oper. Res..

[3]  A.J.J. Talman,et al.  LINEAR STATIONARY POINT PROBLEMS , 1990 .

[4]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[5]  Antonius Henricus van den Elzen Adjustment Processes for Exchange Economies and Noncooperative Games , 1993 .

[6]  A Charnes,et al.  Constrained Games and Linear Programming. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[8]  E. Vandamme Stability and perfection of nash equilibria , 1987 .

[9]  Reinhard Selten,et al.  Evolutionary stability in extensive two-person games - correction and further development , 1988 .

[10]  Robert Wilson Computing Simply Stable Equilibria , 1992 .

[11]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[12]  Dolf Talman,et al.  An Algorithmic Approach toward the Tracing Procedure for Bi-matrix Games , 1999 .

[13]  R. McKelvey,et al.  Computation of equilibria in finite games , 1996 .

[14]  B. Curtis Eaves,et al.  Polymatrix Games with Joint Constraints , 1973 .

[15]  B. Stengel,et al.  COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES , 1996 .

[16]  J. Mertens,et al.  ON THE STRATEGIC STABILITY OF EQUILIBRIA , 1986 .

[17]  Dolf Talman,et al.  A procedure for finding Nash equilibria in bi-matrix games , 1991, ZOR Methods Model. Oper. Res..

[18]  Srihari Govindan,et al.  Equivalence and Invariance of the Index and Degree of Nash Equilibria , 1997 .

[19]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[20]  Robert Wilson Computing Equilibria of Two-Person Games from the Extensive Form , 1972 .

[21]  C. E. Lemke,et al.  Equilibrium Points of Bimatrix Games , 1964 .

[22]  W. Rheinboldt,et al.  Pathways to Solutions, Fixed Points, and Equilibria. , 1983 .

[23]  J. Tomlin Robust implementation of Lemke's method for the linear complementarity problem , 1978 .

[24]  R. Selten Reexamination of the perfectness concept for equilibrium points in extensive games , 1975, Classics in Game Theory.

[25]  A.J.J. Talman,et al.  Tracing equilibria in extensive games by complementary pivoting , 1996 .

[26]  D. Koller,et al.  Efficient Computation of Equilibria for Extensive Two-Person Games , 1996 .

[27]  H. W. Kuhn,et al.  11. Extensive Games and the Problem of Information , 1953 .

[28]  P. Reny Backward Induction, Normal Form Perfection and Explicable Equilibria , 1992 .

[29]  D. Koller,et al.  The complexity of two-person zero-sum games in extensive form , 1992 .

[30]  D. Koller,et al.  Finding mixed strategies with small supports in extensive form games , 1996 .