Darwin at High Temperature: Advancing Solar Cell Material Design Using Defect Kinetics Simulations and Evolutionary Optimization

Despite the pressing need to accelerate the development of novel, low-pollution energy technologies, these usually face increased time-to-market because of extensive experimentation required to identify optimal processing conditions. Processing simulation tools may disrupt this status quo by predicting material performance as a function of readily tunable inputs, such as material purity, processing time-temperature profi les, and ambient annealing conditions. However, the application of Material defects govern the performance of a wide range of energy conversion and storage devices, including photovoltaics, thermoelectrics, and batteries. The success of large-scale, cost-effective manufacturing hinges upon rigorous material optimization to mitigate deleterious defects. Material processing simulations have the potential to accelerate novel energy technology development by modeling defect-evolution thermodynamics and kinetics during processing of raw materials into devices. Here, a predictive process optimization framework is presented for rapid material and process development. A solar cell simulation tool that models defect kinetics during processing is coupled with a genetic algorithm to optimize processing conditions in silico. Experimental samples processed according to conditions suggested by the optimization show signifi cant improvements in material performance, indicated by minority carrier lifetime gains, and confi rm the simulated directions for process improvement. This material optimization framework demonstrates the potential for process simulation to leverage fundamental defect characterization and high-throughput computing to accelerate the pace of learning in materials processing for energy applications.

[1]  K. Wambach,et al.  Precipitates and hydrogen passivation at crystal defects in n- and p-type multicrystalline silicon , 2007 .

[2]  M. Marcus,et al.  Local melting in silicon driven by retrograde solubility , 2013 .

[3]  Paul A. Basore,et al.  Numerical modeling of textured silicon solar cells using PC-1D , 1990 .

[4]  W. Schröter,et al.  STRUCTURAL AND ELECTRICAL PROPERTIES OF METAL SILICIDE PRECIPITATES IN SILICON , 1999 .

[5]  Bhushan Sopori,et al.  Silicon solar-cell processing for minimizing the influence of impurities and defects , 2002 .

[6]  D. Borchert,et al.  Improvement of multicrystalline silicon solar cells by a low temperature anneal after emitter diffusion , 2011 .

[7]  W. Warta,et al.  Imaging of Metastable Defects in Silicon , 2011, IEEE Journal of Photovoltaics.

[8]  A. Holt,et al.  Origin of the low carrier lifetime edge zone in multicrystalline PV silicon , 2009 .

[9]  B. Lai,et al.  Improved iron gettering of contaminated multicrystalline silicon by high temperature phosphorus diffusion , 2013 .

[10]  W. Warta,et al.  Averaging of laterally inhomogeneous lifetimes for one-dimensional modeling of solar cells , 2003 .

[11]  T. Buonassisi,et al.  Engineering metal precipitate size distributions to enhance gettering in multicrystalline silicon , 2012 .

[12]  U. Gösele,et al.  Modeling of gettering of precipitated impurities from Si for carrier lifetime improvement in solar cell applications , 1999 .

[13]  S. Estreicher,et al.  Nickel: A very fast diffuser in silicon , 2013 .

[14]  M. D. de Jonge,et al.  Iron-rich particles in heavily contaminated multicrystalline silicon wafers and their response to phosphorus gettering , 2012 .

[15]  Eicke R. Weber,et al.  Iron and its complexes in silicon , 1999 .

[16]  H. Savin,et al.  Phosphorus and boron diffusion gettering of iron in monocrystalline silicon , 2011 .

[17]  S. Balasubramanian,et al.  Gettering simulator: physical basis and algorithm , 2001 .

[18]  B. Lai,et al.  Applications of synchrotron radiation X-ray techniques on the analysis of the behavior of transition metals in solar cells and single-crystalline silicon with extended defects , 2003 .

[19]  W. Kwapil,et al.  Impact of Impurities From Crucible and Coating on mc-Silicon Quality—the Example of Iron and Cobalt , 2013, IEEE Journal of Photovoltaics.

[20]  G. Hahn,et al.  Quantitative evaluation of grain boundary activity in multicrystalline semiconductors by light beam induced current : an advanced model , 2010 .

[21]  Tonio Buonassisi,et al.  Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling , 2011 .

[22]  Matthew D. Pickett,et al.  Iron point defect reduction in multicrystalline silicon solar cells , 2008 .

[23]  Matthew D. Pickett,et al.  Chemical natures and distributions of metal impurities in multicrystalline silicon materials , 2005 .

[24]  V. Osinniy,et al.  Gettering improvements of minority-carrier lifetimes in solar grade silicon , 2012 .

[25]  J.R. Davis,et al.  Impurities in silicon solar cells , 1980, IEEE Transactions on Electron Devices.

[26]  T. Tan,et al.  Schottky effect model of electrical activity of metallic precipitates in silicon , 2000 .

[27]  Herfried Behnken,et al.  Research on efficiency limiting defects and defect engineering in silicon solar cells - results of the German research cluster SolarFocus , 2011 .

[28]  T. Sekiguchi,et al.  Electron-beam-induced current study of grain boundaries in multicrystalline silicon , 2004 .

[29]  C. Cañizo,et al.  A Comprehensive Model for the Gettering of Lifetime‐Killing Impurities in Silicon , 2000 .

[30]  M. Pickett,et al.  Transition metal interaction and Ni-Fe-Cu-Si phases in silicon , 2007 .

[31]  Hans Joachim Möller,et al.  Multicrystalline silicon for solar cells , 2005 .

[32]  D. Macdonald,et al.  Response to phosphorus gettering of different regions of cast multicrystalline silicon ingots , 1999 .

[33]  Eicke R. Weber,et al.  Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production , 2010 .

[34]  A. Rohatgi,et al.  Bulk lifetime and efficiency enhancement due to gettering and hydrogenation of defects during cast multicrystalline silicon solar cell fabrication , 2008 .

[35]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[36]  T. Tan,et al.  A Quantitative Model of the Electrical Activity of Metal Silicide Precipitates in Silicon Based on the Schottky Effect , 2001 .

[37]  D. Macdonald,et al.  Transition-metal profiles in a multicrystalline silicon ingot , 2005 .

[38]  B. Lai,et al.  Engineering metal-impurity nanodefects for low-cost solar cells , 2005, Nature materials.

[39]  Marc Burgelman,et al.  Modeling thin‐film PV devices , 2004 .

[40]  P. A. Basore,et al.  PC2D: A circular-reference spreadsheet solar cell device simulator , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[41]  L. Arnberg,et al.  Distribution of iron in multicrystalline silicon ingots , 2008 .

[42]  D. Schroder,et al.  Recombination properties of oxygen‐precipitated silicon , 1986 .

[43]  Jennifer Wong-Leung,et al.  Capture cross sections of the acceptor level of iron–boron pairs in p-type silicon by injection-level dependent lifetime measurements , 2001 .

[44]  A. Istratov,et al.  Gettering of iron by oxygen precipitates , 1998 .

[45]  G. Hahn,et al.  Influence of hydrogen on interstitial iron concentration in multicrystalline silicon during annealing steps , 2013 .

[46]  Michael Seibt,et al.  Mechanisms of transition-metal gettering in silicon , 2000 .

[47]  M. Schubert,et al.  Understanding the distribution of iron in multicrystalline silicon after emitter formation: Theoretical model and experiments , 2011 .

[48]  W. Schröter,et al.  Mechanisms and computer modelling of transition element gettering in silicon , 2002 .

[49]  K. Fujiwara,et al.  Quantitative analysis of subgrain boundaries in Si multicrystals and their impact on electrical properties and solar cell performance , 2009 .

[50]  H. Savin,et al.  Modeling phosphorus diffusion gettering of iron in single crystal silicon , 2009 .

[51]  W. Schröter,et al.  Electronic states at dislocations and metal silicide precipitates in crystalline silicon and their role in solar cell materials , 2009 .

[52]  M. Yli-Koski,et al.  Experimental and theoretical study of heterogeneous iron precipitation in silicon , 2007 .

[53]  Stefan W. Glunz,et al.  Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy , 2005 .

[54]  Wilhelm Warta,et al.  Spatially resolved modeling of the combined effect of dislocations and grain boundaries on minority carrier lifetime in multicrystalline silicon , 2007 .

[55]  Eicke R. Weber,et al.  Transition metals in silicon , 1983 .

[56]  K. Wambach,et al.  Impact of Metal Contamination in Silicon Solar Cells , 2010 .

[57]  Frank S. Ham,et al.  Theory of diffusion-limited precipitation , 1958 .

[58]  Jan Schmidt,et al.  Internal gettering of iron in multicrystalline silicon at low temperature , 2008 .

[59]  The influence of structural defects on phosphorus diffusion in multicrystalline silicon , 2006 .

[60]  G. Hahn,et al.  Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon , 2014, IEEE Journal of Photovoltaics.

[61]  K. Bothe,et al.  Formation rates of iron-acceptor pairs in crystalline silicon , 2005 .

[62]  Michael Seibt,et al.  Gettering in silicon photovoltaics: current state and future perspectives , 2006 .

[63]  D. Macdonald,et al.  Interstitial iron concentrations across multicrystalline silicon wafers via photoluminescence imaging , 2011 .

[64]  A. Walsh,et al.  Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .

[65]  C. Cañizo,et al.  Dissolution and gettering of iron during contact co-firing , 2011 .

[66]  T. Buonassisi,et al.  Impurity‐to‐efficiency simulator: predictive simulation of silicon solar cell performance based on iron content and distribution , 2011 .

[67]  T. Buonassisi,et al.  Towards the Tailoring of P Diffusion Gettering to As-Grown Silicon Material Properties , 2011 .

[68]  P. Altermatt,et al.  A Model for Phosphosilicate Glass Deposition via POCl3 for Control of Phosphorus Dose in Si , 2012 .

[69]  G. Coletti,et al.  Sensitivity of state‐of‐the‐art and high efficiency crystalline silicon solar cells to metal impurities , 2013 .

[70]  Wilhelm Warta,et al.  Efficiency limiting bulk recombination in multicrystalline silicon solar cells , 2012 .

[71]  P. Altermatt,et al.  A simple criterion for predicting multicrystalline Si solar cell performance from lifetime images of wafers prior to cell production , 2013 .