All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency

[1]  F. Smole,et al.  Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors , 2014 .

[2]  D. M. Powell,et al.  Assessing the drivers of regional trends in solar photovoltaic manufacturing , 2013 .

[3]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[4]  Christophe Ballif,et al.  Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells , 2013 .

[5]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[6]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[7]  Zhiyong Fan,et al.  Efficient photon capturing with ordered three-dimensional nanowell arrays. , 2012, Nano letters.

[8]  Zongfu Yu,et al.  Hybrid silicon nanocone-polymer solar cells. , 2012, Nano letters.

[9]  Gang Chen,et al.  Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. , 2012, Nano letters.

[10]  Tonio Buonassisi,et al.  Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs , 2012 .

[11]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[12]  Charles M Lieber,et al.  Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics , 2012, Proceedings of the National Academy of Sciences.

[13]  Rolf Brendel,et al.  19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon , 2012 .

[14]  Progress in the Development of All-Back-Contacted Silicon Solar Cells , 2012 .

[15]  R. Mertens,et al.  High efficient n‐type back‐junction back‐contact silicon solar cells with screen‐printed Al‐alloyed emitter and effective emitter passivation study , 2011 .

[16]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[17]  Jinyao Tang,et al.  Solution-processed core-shell nanowires for efficient photovoltaic cells. , 2011, Nature nanotechnology.

[18]  Yi Cui,et al.  Nanowire Solar Cells , 2011 .

[19]  Xiaolin Zheng,et al.  Hybrid Si microwire and planar solar cells: passivation and characterization. , 2011, Nano letters.

[20]  Chel-Jong Choi,et al.  Abnormal Dopant Distribution in $\hbox{POCl}_{3}$ -Diffused $\hbox{N}^{+}$ Emitter of Textured Silicon Solar Cells , 2011, IEEE Electron Device Letters.

[21]  D. Biro,et al.  19.7% Efficient All-Screen-Printed Back-Contact Back-Junction Silicon Solar Cell With Aluminum-Alloyed Emitter , 2011, IEEE Electron Device Letters.

[22]  Amit Lal,et al.  High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. , 2010, Nano letters.

[23]  M. Kondo,et al.  Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties , 2010 .

[24]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[25]  Xin Wang,et al.  High-performance silicon nanohole solar cells. , 2010, Journal of the American Chemical Society.

[26]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[27]  Gang Chen,et al.  Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. , 2010, Nano letters.

[28]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[29]  Jan Benick,et al.  HIGH-EFFICIENCY N-TYPE SILICON SOLAR CELLS WITH FRONT SIDE BORON EMITTER , 2009 .

[30]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[31]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[32]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[33]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[34]  N. E. Schlotter,et al.  Correction to “Preparation of monodisperse silica particles: Control of size and mass fraction” by G.H. Bogush, M.A. Tracy and C.F. Zukoski IV, Journal of Non-Crystalline Solids 104 (1988) 95–106 , 2007 .

[35]  A. Rohatgi,et al.  2D-Modeling and Development of Interdigitated Back Contact Solar Cells on Low-Cost Substrates , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[36]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[37]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[38]  R. M. Swanson,et al.  MANUFACTURE OF SOLAR CELLS WITH 21% EFFICIENCY , 2004 .

[39]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[40]  Richard M. Swanson,et al.  Simplified backside-contact solar cells , 1990 .

[41]  Richard M. Swanson,et al.  Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency , 1990 .

[42]  Charles F. Zukoski,et al.  Preparation of monodisperse silica particles: control of size and mass fraction , 1988 .

[43]  R. M. Swanson,et al.  Point-contact solar cells: Modeling and experiment , 1986 .

[44]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.