Fast predictor-corrector approach for the tempered fractional differential equations

The tempered evolution equation describes the trapped dynamics, widely appearing in nature, e.g., the motion of living particles in viscous liquid. This paper proposes the fast predictor-corrector approach for the tempered fractional ordinary differential equations by digging out the potential ‘very’ short memory principle. Algorithms based on the idea of equidistributing are detailedly described. Error estimates for the proposed schemes are derived; and the effectiveness and low computation cost, being linearly increasing with time t, are numerically demonstrated.

[1]  Marcin Magdziarz,et al.  Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Weihua Deng,et al.  Short memory principle and a predictor-corrector approach for fractional differential equations , 2007 .

[3]  Mark M. Meerschaert,et al.  Tempered stable Lévy motion and transient super-diffusion , 2010, J. Comput. Appl. Math..

[4]  Álvaro Cartea,et al.  Fractional Diffusion Models of Option Prices in Markets With Jumps , 2006 .

[5]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[6]  W. Deng,et al.  Numerical Schemes for Fractional Ordinary Differential Equations , 2012 .

[7]  I. Podlubny Fractional differential equations , 1998 .

[8]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[9]  Neville J. Ford,et al.  The numerical solution of fractional differential equations: Speed versus accuracy , 2001, Numerical Algorithms.

[10]  Mark M. Meerschaert,et al.  Tempered fractional calculus , 2015, J. Comput. Phys..

[11]  A. Hanyga,et al.  Wave propagation in media with singular memory , 2001 .

[12]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[13]  M. Meerschaert,et al.  Tempered anomalous diffusion in heterogeneous systems , 2008 .

[14]  Á. Cartea,et al.  Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Mark M. Meerschaert,et al.  Tempered fractional time series model for turbulence in geophysical flows , 2014 .

[16]  Yujiang Wu,et al.  Efficient algorithms for solving the fractional ordinary differential equations , 2015, Appl. Math. Comput..

[17]  W. Deng,et al.  Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations , 2015, 1501.00376.

[18]  Weihua Deng,et al.  High order schemes for the tempered fractional diffusion equations , 2016, Adv. Comput. Math..

[19]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[20]  I. Sokolov,et al.  Mesoscopic description of reactions for anomalous diffusion: a case study , 2006, cond-mat/0608117.

[21]  J. A. White,et al.  On Selection of Equidistributing Meshes for Two-Point Boundary-Value Problems , 1979 .

[22]  Weihua Deng,et al.  Jacobian-predictor-corrector approach for fractional differential equations , 2012, Adv. Comput. Math..

[23]  Marcin Magdziarz,et al.  Competition between subdiffusion and Lévy flights: a Monte Carlo approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .