Planting molecular functions in an ecological context with Arabidopsis thaliana

The vascular plant Arabidopsis thaliana is a central genetic model and universal reference organism in plant and crop science. The successful integration of different fields of research in the study of A. thaliana has made a large contribution to our molecular understanding of key concepts in biology. The availability and active development of experimental tools and resources, in combination with the accessibility of a wealth of cumulatively acquired knowledge about this plant, support the most advanced systems biology approaches among all land plants. Research in molecular ecology and evolution has also brought the natural history of A. thaliana into the limelight. This article showcases our current knowledge of the natural history of A. thaliana from the perspective of the most closely related plant species, providing an evolutionary framework for interpreting novel findings and for developing new hypotheses based on our knowledge of this plant. DOI: http://dx.doi.org/10.7554/eLife.06100.001

[1]  C. Kole,et al.  Arabidopsis Genome Initiative , 2016 .

[2]  J. Parker,et al.  Effector-triggered immunity: from pathogen perception to robust defense. , 2015, Annual review of plant biology.

[3]  G. Rätsch,et al.  Species-wide Genetic Incompatibility Analysis Identifies Immune Genes as Hot Spots of Deleterious Epistasis , 2014, Cell.

[4]  S. Kay,et al.  Tissue-specific clocks in Arabidopsis show asymmetric coupling , 2014, Nature.

[5]  Caroline Dean,et al.  Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization , 2014, Proceedings of the National Academy of Sciences.

[6]  R. Schmickl,et al.  Taming the wild: resolving the gene pools of non-model Arabidopsis lineages , 2014, BMC Evolutionary Biology.

[7]  Bjarni J. Vilhjálmsson,et al.  Genome-wide association study of Arabidopsis thaliana's leaf microbial community , 2014, Nature Communications.

[8]  C. Pieterse,et al.  Induced systemic resistance by beneficial microbes. , 2014, Annual review of phytopathology.

[9]  Liping Gao,et al.  The long-term maintenance of a resistance polymorphism through diffuse interactions , 2014, Nature.

[10]  T. Korves,et al.  Lagging adaptation to warming climate in Arabidopsis thaliana , 2014, Proceedings of the National Academy of Sciences.

[11]  Simon Gilroy,et al.  Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants , 2014, Proceedings of the National Academy of Sciences.

[12]  N. von Wirén,et al.  CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner , 2014, Proceedings of the National Academy of Sciences.

[13]  J. Martínez-Zapater,et al.  The genetic structure of Arabidopsis thaliana in the south-western Mediterranean range reveals a shared history between North Africa and southern Europe , 2014, BMC Plant Biology.

[14]  P. Schulze-Lefert,et al.  Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives , 2013, Proceedings of the National Academy of Sciences.

[15]  Susan E. Cohen,et al.  Faculty Opinions recommendation of Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. , 2013 .

[16]  E. Farmer,et al.  GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling , 2013, Nature.

[17]  K. Olsen,et al.  A bountiful harvest: genomic insights into crop domestication phenotypes. , 2013, Annual review of plant biology.

[18]  K. Donohue,et al.  PLEIOTROPY IN THE WILD: THE DORMANCY GENE DOG1 EXERTS CASCADING CONTROL ON LIFE CYCLES , 2013, Evolution; international journal of organic evolution.

[19]  S. Brady,et al.  Gene regulatory networks in the Arabidopsis root. , 2013, Current opinion in plant biology.

[20]  J. Vorholt Microbial life in the phyllosphere , 2012, Nature Reviews Microbiology.

[21]  D. Kliebenstein,et al.  Natural Enemies Drive Geographic Variation in Plant Defenses , 2012, Science.

[22]  W. Soppe,et al.  Molecular mechanisms of seed dormancy. , 2012, Plant, cell & environment.

[23]  S. Zeeman,et al.  Starch Metabolism in Arabidopsis , 2012, The arabidopsis book.

[24]  M. Guerinot,et al.  Getting a sense for signals: regulation of the plant iron deficiency response. , 2012, Biochimica et biophysica acta.

[25]  G. Coupland,et al.  The genetic basis of flowering responses to seasonal cues , 2012, Nature Reviews Genetics.

[26]  Robert C. Edgar,et al.  Defining the core Arabidopsis thaliana root microbiome , 2012, Nature.

[27]  R. Amann,et al.  Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota , 2012, Nature.

[28]  O. Loudet,et al.  Allelic Heterogeneity and Trade-Off Shape Natural Variation for Response to Soil Micronutrient , 2012, PLoS genetics.

[29]  J. Abadía,et al.  Nicotianamine Functions in the Phloem-Based Transport of Iron to Sink Organs, in Pollen Development and Pollen Tube Growth in Arabidopsis[C][W] , 2012, Plant Cell.

[30]  P. Ronald,et al.  Plant innate immunity: perception of conserved microbial signatures. , 2012, Annual review of plant biology.

[31]  David Taylor Defining the core , 2012 .

[32]  A. Auton,et al.  Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel , 2011, Nature Genetics.

[33]  Joy Bergelson,et al.  References and Notes Supporting Online Material Adaptation to Climate across the Arabidopsis Thaliana Genome , 2022 .

[34]  M. Nordborg,et al.  A Map of Local Adaptation in Arabidopsis thaliana , 2011, Science.

[35]  P. Schulze-Lefert,et al.  NLR functions in plant and animal immune systems: so far and yet so close , 2011, Nature Immunology.

[36]  S. Abel Phosphate sensing in root development. , 2011, Current opinion in plant biology.

[37]  N. Geldner,et al.  A novel protein family mediates Casparian strip formation in the endodermis , 2011, Nature.

[38]  Shane T. Jensen,et al.  LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. , 2011, Developmental Cell.

[39]  Richard M. Clark,et al.  The Arabidopsis lyrata genome sequence and the basis of rapid genome size change , 2011, Nature Genetics.

[40]  Joy Bergelson,et al.  Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana , 2010, Nature Reviews Genetics.

[41]  M. Clements,et al.  Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana , 2010, Proceedings of the National Academy of Sciences.

[42]  Andrew J. Heidel,et al.  Population history in Arabidopsis halleri using multilocus analysis , 2010, Molecular ecology.

[43]  U. Krämer Metal hyperaccumulation in plants. , 2010, Annual review of plant biology.

[44]  I. Sønderby,et al.  Biosynthesis of glucosinolates--gene discovery and beyond. , 2010, Trends in plant science.

[45]  Joy Bergelson,et al.  Linkage and Association Mapping of Arabidopsis thaliana Flowering Time in Nature , 2010, PLoS genetics.

[46]  Tina T. Hu,et al.  Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils , 2010, Nature Genetics.

[47]  M. Koornneef,et al.  The development of Arabidopsis as a model plant. , 2010, The Plant journal : for cell and molecular biology.

[48]  Muhammad Ali Amer,et al.  Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines , 2010, Nature.

[49]  Richard M. Clark,et al.  The Rate and Molecular Spectrum of Spontaneous Mutations in Arabidopsis thaliana , 2010, Science.

[50]  B. Lugtenberg,et al.  Plant-growth-promoting rhizobacteria. , 2009, Annual review of microbiology.

[51]  Mark G. M. Aarts,et al.  What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation? , 2009, The Plant Cell Online.

[52]  Brook T. Moyers,et al.  Effects of Genetic Perturbation on Seasonal Life History Plasticity , 2009, Science.

[53]  C. Böttcher,et al.  Phytochelatin Synthesis Is Essential for the Detoxification of Excess Zinc and Contributes Significantly to the Accumulation of Zinc1[W][OA] , 2008, Plant Physiology.

[54]  J. Martínez-Zapater,et al.  Natural Genetic Variation of Arabidopsis thaliana Is Geographically Structured in the Iberian Peninsula , 2008, Genetics.

[55]  Detlef Weigel,et al.  Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4 , 2008, Nature.

[56]  Noah A. Rosenberg,et al.  Demographic History of European Populations of Arabidopsis thaliana , 2008, PLoS genetics.

[57]  J. Nemhauser Dawning of a new era: photomorphogenesis as an integrated molecular network. , 2008, Current opinion in plant biology.

[58]  James B. Beck,et al.  Native range genetic variation in Arabidopsis thaliana is strongly geographically structured and reflects Pleistocene glacial dynamics , 2007, Molecular ecology.

[59]  Daniel L. Mace,et al.  A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns , 2007, Science.

[60]  M. Wierzbicka,et al.  Arabidopsis arenosa (Brassicaceae) from a lead–zinc waste heap in southern Poland – a plant with high tolerance to heavy metals , 2007, Plant and Soil.

[61]  Richard M. Clark,et al.  The Evolution of Selfing in Arabidopsis thaliana , 2007, Science.

[62]  M. Koch,et al.  Evolution and genetic differentiation among relatives of Arabidopsis thaliana , 2007, Proceedings of the National Academy of Sciences.

[63]  C. Cobbett,et al.  The use of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. , 2007, The New phytologist.

[64]  Bruce D. Smith,et al.  The Molecular Genetics of Crop Domestication , 2006, Cell.

[65]  M. Koornneef,et al.  Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis , 2006, Proceedings of the National Academy of Sciences.

[66]  A. Murphy,et al.  Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. , 2006, The New phytologist.

[67]  D. Charlesworth,et al.  The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr. , 2006, Molecular biology and evolution.

[68]  T. Mitchell-Olds,et al.  Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis , 2006, Nature.

[69]  Mattias Jakobsson,et al.  A unique recent origin of the allotetraploid species Arabidopsis suecica: Evidence from nuclear DNA markers. , 2006, Molecular biology and evolution.

[70]  C. Böttcher,et al.  The transition metal chelator nicotianamine is synthesized by filamentous fungi , 2006, FEBS letters.

[71]  Barbara Ann Halkier,et al.  Biology and biochemistry of glucosinolates. , 2006, Annual review of plant biology.

[72]  S. Clemens Evolution and function of phytochelatin synthases. , 2006, Journal of plant physiology.

[73]  Mattias Jakobsson,et al.  The Pattern of Polymorphism in Arabidopsis thaliana , 2005, PLoS biology.

[74]  T. Mitchell-Olds,et al.  A Multilocus Sequence Survey in Arabidopsis thaliana Reveals a Genome-Wide Departure From a Neutral Model of DNA Sequence Polymorphism , 2005, Genetics.

[75]  J. Gray The Dawning of a New Era , 2004 .

[76]  D. Ravenscroft,et al.  Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering , 2004, Science.

[77]  M. Jakobsson,et al.  Chloroplast DNA indicates a single origin of the allotetraploid Arabidopsis suecica , 2003, Journal of evolutionary biology.

[78]  D. Charlesworth,et al.  Subdivision and haplotype structure in natural populations of Arabidopsis lyrata , 2003, Molecular ecology.

[79]  M. Kreitman,et al.  Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana , 2003, Nature.

[80]  Ilia J. Leitch,et al.  Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb) Using Flow Cytometry Show Genome Size in Arabidopsis to be ∼157 Mb and thus ∼25 % Larger than the Arabidopsis Genome Initiative Estimate of ∼125 Mb , 2003 .

[81]  M. Koornneef,et al.  A fortunate choice: the history of Arabidopsis as a model plant , 2002, Nature Reviews Genetics.

[82]  Ihsan A. Al-Shehbaz,et al.  Taxonomy and Phylogeny of Arabidopsis (Brassicaceae) , 2002, The arabidopsis book.

[83]  C. Dean,et al.  Arabidopsis, the Rosetta stone of flowering time? , 2002, Science.

[84]  M. Lenhard,et al.  Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUS , 2001, Cell.

[85]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[86]  T. Sharbel,et al.  Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe , 2000, Molecular ecology.

[87]  M. A. Koch,et al.  Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). , 2000, Molecular biology and evolution.

[88]  Robert W. Williams,et al.  The CLAVATA1 Gene Encodes a Putative Receptor Kinase That Controls Shoot and Floral Meristem Size in Arabidopsis , 1997, Cell.

[89]  P. Benfey,et al.  The SCARECROW Gene Regulates an Asymmetric Cell Division That Is Essential for Generating the Radial Organization of the Arabidopsis Root , 1996, Cell.

[90]  A. Chu,et al.  COP1, an arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain , 1992, Cell.

[91]  T. Berleth,et al.  Mutations affecting body organization in the Arabidopsis embryo , 1991, Nature.

[92]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[93]  H. Kinzel,et al.  Pflanzenokologie und Mineralstoffwechsel. , 1983 .

[94]  I. Baldwin,et al.  THE NATURAL HISTORY OF MODEL ORGANISMS , 2015 .

[95]  C. Tonelli,et al.  Environmental stress and flowering time: The photoperiodic connection. , 2014, Plant signaling & behavior.

[96]  Bjarni J. Vilhjálmsson,et al.  Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines , 2010 .

[97]  Z. Chen,et al.  Evolution of genome size in Brassicaceae. , 2005, Annals of botany.

[98]  Ulrich Kück Praktikum der Molekulargenetik , 2005 .

[99]  Cristina Martinez,et al.  Salicylic acid regulates flowering time and links defence responses and reproductive development. , 2004, The Plant journal : for cell and molecular biology.

[100]  R. Cheloha,et al.  The of a Development , 2004 .

[101]  D. Weigel,et al.  A genetic and molecular model for flower development in Arabidopsis thaliana. , 1991, Development (Cambridge, England). Supplement.