Decompounding on Compact Lie Groups

Noncommutative harmonic analysis is used to solve a nonparametric estimation problem stated in terms of compound Poisson processes on compact Lie groups. This problem of decompounding is a generalization of a similar classical problem. The proposed solution is based on a characteristic function method. The treated problem is important to recent models of the physical inverse problem of multiple scattering.

[1]  D. J. Uherka,et al.  On the Continuous Dependence of the Roots of a Polynomial on its Coefficients , 1977 .

[2]  K. Maurin Representations of Compact Lie Groups , 1997 .

[3]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[4]  P. Kim Deconvolution density estimation on SO(N) , 1998 .

[5]  David Applebaum,et al.  Compound Poisson Processes and Lévy Processes in Groups and Symmetric Spaces , 2000 .

[6]  Ja-Yong Koo,et al.  Asymptotic Minimax Bounds for Stochastic Deconvolution Over Groups , 2008, IEEE Transactions on Information Theory.

[7]  Michael Fehler,et al.  Seismic Wave Propagation and Scattering in the Heterogeneous Earth , 2012 .

[8]  R. Carter Lie Groups , 1970, Nature.

[9]  Luděk Klimeš,et al.  Correlation Functions of Random Media , 2002 .

[10]  Birsen Yazici,et al.  Stochastic deconvolution over groups , 2004, IEEE Transactions on Information Theory.

[11]  M. Liao Lévy Processes in Lie Groups , 2004 .

[12]  L. Papiez,et al.  Compound-Poisson-process method for the multiple scattering of charged particles. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Alexander A. Kokhanovsky Small-angle approximations of the radiative transfer theory , 1997 .

[14]  D. J. Uherka,et al.  On the Continuous Dependence of the Roots of a Polynomial on its Coefficients , 1977 .

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  U. Grenander Probabilities on Algebraic Structures , 1964 .

[17]  Ming Liao,et al.  Lévy processes and Fourier analysis on compact Lie groups , 2004 .

[18]  Peter T. Kim,et al.  Optimal Spherical Deconvolution , 2002 .

[19]  G. Chirikjian,et al.  Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .

[20]  Peter Spreij,et al.  A kernel type nonparametric density estimator for decompounding , 2005, math/0505355.

[21]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[22]  Herbert Heyer,et al.  Probability Measures on Locally Compact Groups , 1977 .

[23]  Rudolf Grübel,et al.  Decompounding: an estimation problem for Poisson random sums , 2003 .

[24]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .