Ignition of Aluminum Powders Under Different Experimental Conditions

This paper presents a brief review of experimental measurements of aluminum ignition temperature. Models used to describe aluminum ignition are also reviewed. It is shown that the current models cannot describe ignition of aluminum powders of different sizes and ignited under various experimental conditions. The paper further discusses properties of and phase changes occurring in the alumina scale existing on the surface of aluminum particles at different temperatures. Results of recent thermal analysis studies of aluminum powder oxidation are presented and it is shown that the stepwise oxidation of aluminum is caused by the sequence of polymorphic phase transitions occurring in the growing oxide film. Finally, the qualitative connection between the processes governing the oxidation of aluminum powders and the ignition of aluminum particles is made and an explanation for the experimentally observed wide range of aluminum ignition temperatures is suggested.

[1]  O. Sherby,et al.  Deformation of fine-grained alumina by grain boundary sliding accommodated by slip , 2003 .

[2]  A. S. Tompa,et al.  Low/high temperature relationships in dinitramide salts by DEA/DSC and study of oxidation of aluminum powders by DSC/TG , 1997 .

[3]  J. C. Sánchez-López,et al.  Passivation of nanocrystalline Al prepared by the gas phase condensation method: An x-ray photoelectron spectroscopy study , 1998 .

[4]  D. Kuehl Ignition and combustion of aluminum and beryllium. , 1965 .

[5]  L. Stesik,et al.  Ignition and combustion of aluminum and zinc in air , 1977 .

[6]  D. Brandon,et al.  Metastable alumina polymorphs : Crystal structures and transition sequences , 2005 .

[7]  R. Schaller Mechanical spectroscopy of the high-temperature brittle-to-ductile transition in ceramics and cermets , 2000 .

[8]  E. .. Mittemeijer,et al.  Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium , 2002 .

[9]  A. Steinheil Struktur und Wachstum dünner Oberflächenschichten auf Metallen bei Oxydation an Luft , 1934 .

[10]  N. Vaganova,et al.  A strength model of heterogeneous ignition of metal particles , 1992 .

[11]  H. Krier,et al.  Ignition and combustion of aluminum/magnesium alloy particles in O2 at high pressures , 1993 .

[12]  M. Brewster,et al.  Oscillatory combustion of aluminized composite propellants , 1996 .

[13]  M. W. Roberts,et al.  Direct Observation in the Electron Microscope of Oxide Layers on Aluminum , 1961 .

[14]  V. Rosenband Thermo-mechanical aspects of the heterogeneous ignition of metals , 2004 .

[15]  S. V. Poplavski,et al.  Self-ignition and ignition of aluminum powders in shock waves , 2002 .

[16]  A. Fedorov,et al.  Ignition of an Aluminum Particle , 2003 .

[17]  F. Tichelaar,et al.  Thermodynamic stability of amorphous oxide films on metals: Application to aluminum oxide films on aluminum substrates , 2000 .

[18]  Hu Dong,et al.  Study of the fast reaction characteristics of aluminized PETN explosive powders , 1996 .

[19]  V. A. Babuk,et al.  Model of aluminum agglomerate evolution in combustion products of solid rocket propellant , 2002 .

[20]  V. M. Fomin,et al.  Mathematical modeling of metal particle ignition in the high-temperature flow behind a shock , 1982 .

[21]  S. Yuasa,et al.  Effects of oxygen concentration on combustion of aluminum in oxygen/nitrogen mixture streams , 1998 .

[22]  A. Navrotsky,et al.  Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas , 1997 .

[23]  N. Eisenreich,et al.  On the Mechanism of Low Temperature Oxidation for Aluminum Particles down to the Nano-Scale , 2004 .

[24]  Saburo Yuasa,et al.  Ignition and combustion of aluminum in oxygen/nitrogen mixture streams , 1997 .

[25]  I. Glassman,et al.  Vapor-Phase Diffusion Flames in the Combustion of Magnesium and Aluminum: III. Experimental Observations in Carbon Dioxide Atmospheres , 1963 .

[26]  H. Viljoen,et al.  Combustion of metallic powders : a phenomenological model for the initiation of combustion , 1993 .

[27]  A. Gromov,et al.  Reactivity of Aluminum Powders , 2001 .

[28]  B. M. Henry,et al.  A microstructural study of transparent metal oxide gas barrier films , 1999 .

[29]  K. P. Brooks,et al.  Dynamics of aluminum combustion , 1995 .

[30]  A. Maček,et al.  Ignition and combustion of aluminium particles in hot ambient gases , 1962 .

[31]  R. Davis,et al.  Direct Observation of the Oxidation of Aluminum Single‐Crystal Surfaces , 1963 .

[32]  Frans D. Tichelaar,et al.  Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum , 2002 .

[33]  C. Simensen,et al.  The oxidation of molten aluminum , 1989 .

[34]  A. Hayashi,et al.  Aluminum dust ignition behind reflected shock wave: two-dimensional simulations , 2002 .