Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation
暂无分享,去创建一个
[1] S. Fedotov,et al. Front propagation into an unstable state of reaction-transport systems. , 2001, Physical review letters.
[2] ScienceDirect,et al. Applied numerical mathematics , 1985 .
[3] S. Fedotov. TRAVELING WAVES IN A REACTION-DIFFUSION SYSTEM : DIFFUSION WITH FINITE VELOCITY AND KOLMOGOROV-PETROVSKII-PISKUNOV KINETICS , 1998 .
[4] Jim Douglas,et al. Numerical methods for integro-differential equations of parabolic and hyperbolic types , 1962 .
[5] Vicenç Méndez,et al. Dynamics and thermodynamics of delayed population growth , 1997 .
[6] Vicenç Méndez,et al. Hyperbolic reaction-diffusion equations for a forest fire model , 1997 .
[7] D. Aronson,et al. Multidimensional nonlinear di u-sion arising in population genetics , 1978 .
[8] Nai Ying Zhang,et al. On fully discrete Galerkin approximations for partial integro-differential equations of parabolic type , 1993 .
[9] A. Louisa,et al. コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .
[10] Vidar Thomée,et al. Time discretization of an integro-differential equation of parabolic type , 1986 .
[11] Toni Pujol,et al. Dispersal probability distributions and the wave-front speed problem. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] S. Fedotov,et al. Nonuniform reaction rate distribution for the generalized Fisher equation: ignition ahead of the reaction front. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.