Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation

In this paper we study numerical methods for solving integro-differential equations which generalize the well-known Fisher equation. The numerical methods are obtained considering the MOL (Method of Lines) approach. The stability and convergence of the methods are studied. Numerical results illustrating the theoretical results proved are also included.

[1]  S. Fedotov,et al.  Front propagation into an unstable state of reaction-transport systems. , 2001, Physical review letters.

[2]  ScienceDirect,et al.  Applied numerical mathematics , 1985 .

[3]  S. Fedotov TRAVELING WAVES IN A REACTION-DIFFUSION SYSTEM : DIFFUSION WITH FINITE VELOCITY AND KOLMOGOROV-PETROVSKII-PISKUNOV KINETICS , 1998 .

[4]  Jim Douglas,et al.  Numerical methods for integro-differential equations of parabolic and hyperbolic types , 1962 .

[5]  Vicenç Méndez,et al.  Dynamics and thermodynamics of delayed population growth , 1997 .

[6]  Vicenç Méndez,et al.  Hyperbolic reaction-diffusion equations for a forest fire model , 1997 .

[7]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[8]  Nai Ying Zhang,et al.  On fully discrete Galerkin approximations for partial integro-differential equations of parabolic type , 1993 .

[9]  A. Louisa,et al.  コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .

[10]  Vidar Thomée,et al.  Time discretization of an integro-differential equation of parabolic type , 1986 .

[11]  Toni Pujol,et al.  Dispersal probability distributions and the wave-front speed problem. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  S. Fedotov,et al.  Nonuniform reaction rate distribution for the generalized Fisher equation: ignition ahead of the reaction front. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.