The structure and function of platelet integrins

Summary.  Integrins are a ubiquitous family of non‐covalently associated α/β transmembrane heterodimers linking extracellular ligands to intracellular signaling pathways [ 1 ] [Cell, 2002; 110: 673]. Platelets contain five integrins, three β1 integrins that mediate platelet adhesion to the matrix proteins collagen, fibronectin and laminin, and the β3 integrins αvβ3 and αIIbβ3 [ 2 ] [J Clin Invest, 2005; 115: 3363]. While there are only several hundred αvβ3 molecules per platelet, αvβ3 mediates platelet adhesion to osteopontin and vitronectin in vitro [ 3 ] [J Biol Chem, 1997; 272: 8137]; whether this occurs in vivo remains unknown. By contrast, the 80 000 αIIbβ3 molecules on agonist‐stimulated platelets bind fibrinogen, von Willebrand factor, and fibronectin, mediating platelet aggregation when the bound proteins crosslink adjacent platelets [ 2 ] [J Clin Invest, 2005; 115: 3363]. Although platelet integrins are poised to shift from resting to active conformations, tight regulation of their activity is essential to prevent the formation of intravascular thrombi. This review focuses on the structure and function of the intensively studied β3 integrins, in particular αIIbβ3, but reference will be made to other integrins where relevant.

[1]  M. Shimaoka,et al.  Requirement of α and β subunit transmembrane helix separation for integrin outside-in signaling , 2007 .

[2]  J. Takagi,et al.  A Specific Interface between Integrin Transmembrane Helices and Affinity for Ligand , 2004, PLoS biology.

[3]  B. Nieswandt,et al.  Kindlin-3 is essential for integrin activation and platelet aggregation , 2008, Nature Medicine.

[4]  J. Bennett,et al.  Structure and function of the platelet integrin αIIbβ3 , 2005 .

[5]  B. Yaspan,et al.  NMR analysis of structure and dynamics of the cytosolic tails of integrin alpha IIb beta 3 in aqueous solution. , 2001, Biochemistry.

[6]  A. Coutinho,et al.  Conformational changes in human integrin αIIbβ3 after platelet activation, monitored by FRET , 2007 .

[7]  J. Torres,et al.  Disruption of the Integrin αLβ2 Transmembrane Domain Interface by β2 Thr-686 Mutation Activates αLβ2 and Promotes Micro-clustering of the αL Subunits* , 2009, Journal of Biological Chemistry.

[8]  Mark Yeager,et al.  Three-dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin , 2005, The Journal of cell biology.

[9]  J. A. Hamilton,et al.  Evidence That Monoclonal Antibodies Directed against the Integrin β Subunit Plexin/Semaphorin/Integrin Domain Stimulate Function by Inducing Receptor Extension* , 2005, Journal of Biological Chemistry.

[10]  W. DeGrado,et al.  Protein-protein interactions in the membrane: sequence, structural, and biological motifs. , 2008, Structure.

[11]  W. DeGrado,et al.  Activation of platelet alphaIIbbeta3 by an exogenous peptide corresponding to the transmembrane domain of alphaIIb. , 2006, The Journal of biological chemistry.

[12]  J. Weisel,et al.  Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. , 1992, The Journal of biological chemistry.

[13]  Minsoo Kim,et al.  Bidirectional Transmembrane Signaling by Cytoplasmic Domain Separation in Integrins , 2003, Science.

[14]  Stephen C. Blacklow,et al.  Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation , 2002, Nature Structural Biology.

[15]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand , 2002, Science.

[16]  J. Brugge,et al.  Src kinase activation by direct interaction with the integrin β cytoplasmic domain , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Coutinho,et al.  Conformational changes in human integrin alphaIIbbeta3 after platelet activation, monitored by FRET. , 2007, Biophysical chemistry.

[18]  A. Chigaev,et al.  Conformational regulation of alpha 4 beta 1-integrin affinity by reducing agents. "Inside-out" signaling is independent of and additive to reduction-regulated integrin activation. , 2004, The Journal of biological chemistry.

[19]  R. Aster,et al.  A recombinant soluble form of the integrin alpha IIb beta 3 (GPIIb-IIIa) assumes an active, ligand-binding conformation and is recognized by GPIIb-IIIa-specific monoclonal, allo-, auto-, and drug-dependent platelet antibodies. , 1998, Blood.

[20]  J. Fox,et al.  The Platelet Cytoskeleton Stabilizes the Interaction between and Its Ligand and Induces Selective Movements of Ligand-occupied Integrin (*) , 1996, The Journal of Biological Chemistry.

[21]  E. Plow,et al.  The Cytoplasmic Domain of , 1996, The Journal of Biological Chemistry.

[22]  Wei Yang,et al.  The primacy of affinity over clustering in regulation of adhesiveness of the integrin αLβ2 , 2004, The Journal of cell biology.

[23]  W. DeGrado,et al.  Agonist-activated αvβ3 on Platelets and Lymphocytes Binds to the Matrix Protein Osteopontin* , 1997, The Journal of Biological Chemistry.

[24]  Gregory A Caputo,et al.  Supporting Online Material for Computational Design of Peptides That Target Transmembrane Helices , 2007 .

[25]  N. Green,et al.  Electron microscopy and structural model of human fibronectin receptor. , 1988, The EMBO journal.

[26]  Noritaka Nishida,et al.  Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. , 2008, Molecular cell.

[27]  M. Arnaout,et al.  The β-tail domain (βTD) regulates physiologic ligand binding to integrin CD11b/CD18 , 2007 .

[28]  W. DeGrado,et al.  A push-pull mechanism for regulating integrin function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  W. DeGrado,et al.  Activation of Platelet αIIbβ3 by an Exogenous Peptide Corresponding to the Transmembrane Domain of αIIb*> , 2006, Journal of Biological Chemistry.

[30]  Mattia Rocco,et al.  Integrin conformational regulation: uncoupling extension/tail separation from changes in the head region by a multiresolution approach. , 2008, Structure.

[31]  Barry S. Coller,et al.  Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics , 2004, Nature.

[32]  Eric R. Prossnitz,et al.  FRET Detection of Cellular α4-Integrin Conformational Activation , 2003 .

[33]  J. Qin,et al.  A structural basis for integrin activation by the cytoplasmic tail of the alpha IIb-subunit. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Anthony W Partridge,et al.  Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles. , 2008, Biochemistry.

[35]  R. Liddington,et al.  Structural Basis of Integrin Activation by Talin , 2007, Cell.

[36]  A. Wand,et al.  Characterization of the monomeric form of the transmembrane and cytoplasmic domains of the integrin beta 3 subunit by NMR spectroscopy. , 2002, Biochemistry.

[37]  S. Goodman,et al.  Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an 'inside-out' suppressor? , 1998, The Biochemical journal.

[38]  Robert C. Liddington,et al.  Faculty Opinions recommendation of Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. , 2002 .

[39]  Thilo Stehle,et al.  New insights into the structural basis of integrin activation. , 2003, Blood.

[40]  Jun Qin,et al.  A Structural Mechanism of Integrin αIIbβ3 “Inside-Out” Activation as Regulated by Its Cytoplasmic Face , 2002, Cell.

[41]  K. Taylor,et al.  Integrin alpha IIb beta 3 in a membrane environment remains the same height after Mn2+ activation when observed by cryoelectron tomography. , 2008, Journal of molecular biology.

[42]  Vikas Nanda,et al.  Dimerization of the Transmembrane Domain of Integrin αIIb Subunit in Cell Membranes* , 2004, Journal of Biological Chemistry.

[43]  M. Arnaout,et al.  The beta-tail domain (betaTD) regulates physiologic ligand binding to integrin CD11b/CD18. , 2007, Blood.

[44]  J. Bowie,et al.  Transmembrane domain helix packing stabilizes integrin alphaIIbbeta3 in the low affinity state. , 2005, The Journal of biological chemistry.

[45]  M. Shimaoka,et al.  Requirement of alpha and beta subunit transmembrane helix separation for integrin outside-in signaling. , 2007, Blood.

[46]  Junichi Takagi,et al.  Structure of integrin α5β1 in complex with fibronectin , 2003, The EMBO journal.

[47]  E. Mitchell,et al.  A Structural Hypothesis for the Transition between Bent and Extended Conformations of the Leukocyte β2 Integrins* , 2007, Journal of Biological Chemistry.

[48]  Thilo Stehle,et al.  A Novel Adaptation of the Integrin PSI Domain Revealed from Its Crystal Structure* , 2004, Journal of Biological Chemistry.

[49]  J. Takagi,et al.  Locking the beta3 integrin I-like domain into high and low affinity conformations with disulfides. , 2004, The Journal of biological chemistry.

[50]  J. Qin,et al.  Membrane-mediated structural transitions at the cytoplasmic face during integrin activation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  T. Springer,et al.  Tests of the Extension and Deadbolt Models of Integrin Activation* , 2007, Journal of Biological Chemistry.

[52]  James H. Prestegard,et al.  A Transmembrane Helix Dimer: Structure and Implications , 1997, Science.

[53]  Renhao Li,et al.  Oligomerization of the integrin αIIbβ3: Roles of the transmembrane and cytoplasmic domains , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Bennett,et al.  Structure and function of the platelet integrin alphaIIbbeta3. , 2005, The Journal of clinical investigation.

[55]  D. Engelman,et al.  The GxxxG motif: a framework for transmembrane helix-helix association. , 2000, Journal of molecular biology.

[56]  D. Engelman,et al.  Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. , 1992, The Journal of biological chemistry.

[57]  Harold P. Erickson,et al.  C-terminal opening mimics 'inside-out' activation of integrin α5β1 , 2001, Nature Structural Biology.

[58]  A. Chigaev,et al.  FRET detection of cellular alpha4-integrin conformational activation. , 2003, Biophysical journal.

[59]  Renhao Li,et al.  Activation of Integrin αIIbß3 by Modulation of Transmembrane Helix Associations , 2003, Science.

[60]  J. Weisel,et al.  Functional and structural correlations of individual αIIbβ3 molecules , 2004 .

[61]  A. Chigaev,et al.  Conformational Regulation of α4β1-Integrin Affinity by Reducing Agents , 2004, Journal of Biological Chemistry.

[62]  G. Lippens,et al.  Divalent Cations Differentially Regulate Integrin αIIb Cytoplasmic Tail Binding to β3 and to Calcium- and Integrin-binding Protein* , 1999, The Journal of Biological Chemistry.

[63]  R. Liddington,et al.  Talin Binding to Integrin ß Tails: A Final Common Step in Integrin Activation , 2003, Science.

[64]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[65]  J. Takagi,et al.  Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Bowie,et al.  Transmembrane Domain Helix Packing Stabilizes Integrin αIIbβ3 in the Low Affinity State* , 2005, Journal of Biological Chemistry.

[67]  M. Gerstein,et al.  Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. , 2000, Journal of molecular biology.

[68]  William F. DeGrado,et al.  Asparagine-mediated self-association of a model transmembrane helix , 2000, Nature Structural Biology.

[69]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 , 2001, Science.

[70]  H. Vogel,et al.  Solution structures of the cytoplasmic tail complex from platelet integrin αIIb- and β3-subunits , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Junichi Takagi,et al.  Global Conformational Rearrangements in Integrin Extracellular Domains in Outside-In and Inside-Out Signaling , 2002, Cell.

[72]  M. Yeager,et al.  Three-dimensional model of the human platelet integrin alpha IIbbeta 3 based on electron cryomicroscopy and x-ray crystallography. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Timothy A. Springer,et al.  Association of the Membrane Proximal Regions of the α and β Subunit Cytoplasmic Domains Constrains an Integrin in the Inactive State* , 2001, The Journal of Biological Chemistry.

[74]  Junichi Takagi,et al.  Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[75]  V. Quaranta,et al.  Integrin cytoplasmic domains mediate inside-out signal transduction , 1994, The Journal of cell biology.