Low threading dislocation density GaAs growth on on-axis GaP/Si (001)

We report a systematic study of high quality GaAs growths on on-axis (001) GaP/Si substrates using molecular beam epitaxy. Various types of dislocation filter layers and growth temperatures of initial GaAs layer were investigated to reduce the threading dislocation densities in GaAs on GaP/Si. Electron channeling contrast imaging techniques revealed that an optimized GaAs buffer layer with thermal cycle annealing and InGaAs/GaAs dislocation filter layers has a threading dislocation density of 7.2 × 106 cm−2, which is a factor of 40 lower than an unoptimized GaAs buffer. The root-mean-square surface roughness was greatly decreased from 7.8 nm to 2.9 nm after the optimization process. A strong enhancement in photoluminescence intensity indicates that the optimized GaAs template grown on on-axis (001) GaP/Si substrates is a promising virtual substrate for Si-based optoelectronic devices.

[1]  T. Figielski,et al.  Misfit strain anisotropy in partially relaxed lattice-mismatched InGaAs/GaAs heterostructures , 2004 .

[2]  M. V. Rao,et al.  Effect of Cycle Annealing Parameters on Dislocation Density Reduction for HgCdTe on Si , 2011 .

[3]  Lan Yu,et al.  Mid-infrared electroluminescence from InAs type-I quantum wells grown on InAsP/InP metamorphic buffers , 2015 .

[4]  M. Yamaguchi,et al.  Thermal annealing effects of defect reduction in GaAs on Si substrates , 1990 .

[5]  Taizo Masuda,et al.  InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001) , 2014 .

[6]  John E. Bowers,et al.  High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si , 2017 .

[7]  W. Stolz,et al.  Improvements in the heteroepitaxial growth of GaAs on Si by MOVPE , 1993 .

[8]  C. Humphreys,et al.  A dynamical theory for the contrast of perfect and imperfect crystals in the scanning electron microscope using backscattered electrons , 1972 .

[9]  Yoshio Itoh,et al.  Defect reduction effects in GaAs on Si substrates by thermal annealing , 1988 .

[10]  G. Y. Robinson,et al.  Optical properties of GaAs on (100) Si using molecular beam epitaxy , 1984 .

[11]  John E. Bowers,et al.  Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Richard Beanland,et al.  Dislocation filters in GaAs on Si , 2015 .

[13]  M. Lee,et al.  GaAsP solar cells on GaP/Si with low threading dislocation density , 2016 .

[14]  Kei May Lau,et al.  Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. , 2017, Optics express.

[15]  Hisashi Shichijo,et al.  Dislocation reduction by impurity diffusion in epitaxial GaAs grown on Si , 1988 .

[16]  Wei Wang,et al.  Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100) , 1984 .

[17]  I. Yonenaga,et al.  Impurity effects on the generation, velocity, and immobilization of dislocations in GaAs , 1989 .

[18]  Y. Bogumilowicz,et al.  Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility , 2016 .

[19]  Hadis Morkoç,et al.  Material properties of high‐quality GaAs epitaxial layers grown on Si substrates , 1986 .

[20]  S. Pearton,et al.  Antiphase domains in GaAs grown by metalorganic chemical vapor deposition on silicon‐on‐insulator , 1988 .

[21]  R. Matyi,et al.  Generation of misfit dislocations in GaAs grown on Si , 1989 .

[22]  M. Umeno,et al.  Characterization of epitaxially grown GaAs on Si substrates with III‐V compounds intermediate layers by metalorganic chemical vapor deposition , 1985 .

[23]  Wolfgang Stolz,et al.  Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions , 2008 .

[24]  Y. Takano,et al.  Reduction of threading dislocations by InGaAs interlayer in GaAs layers grown on Si substrates , 1998 .

[25]  O. P. Pchelyakov,et al.  GaAs epitaxy on Si substrates: modern status of research and engineering , 2008 .

[26]  Yoshio Itoh,et al.  Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained‐layer superlattices , 1989 .

[27]  W. Pompe,et al.  Computer simulation of threading dislocation density reduction in heteroepitaxial layers , 1997 .

[28]  John E. Bowers,et al.  Electrically pumped continuous wave 1.3 µm quantum dot lasers epitaxially grown on on-axis (001) Si , 2016, 2016 International Semiconductor Laser Conference (ISLC).

[29]  M. Graef,et al.  Rapid misfit dislocation characterization in heteroepitaxial III-V/Si thin films by electron channeling contrast imaging , 2014 .

[30]  Y. Takano,et al.  Residual strain and threading dislocation density in InGaAs layers grown on Si substrates by metalorganic vapor-phase epitaxy , 2001 .

[31]  Hadis Morkoç,et al.  Dislocation reduction in epitaxial GaAs on Si(100) , 1986 .

[32]  M. Akiyama,et al.  Misfit and Threading Dislocations in GaAs Layers Grown on Si Substrates by MOCVD , 1987 .

[33]  M. Yamaguchi,et al.  Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates , 1989 .

[34]  Eugene A. Fitzgerald,et al.  Dislocations in strained-layer epitaxy : theory, experiment, and applications , 1991 .

[35]  W. Pompe,et al.  Modeling of Threading Dislocation Density Reduction in Heteroepitaxial Layers , 1997 .

[36]  Steven A. Ringel,et al.  Applications of Electron Channeling Contrast Imaging for the Rapid Characterization of Extended Defects in III–V/Si Heterostructures , 2015, IEEE Journal of Photovoltaics.

[37]  Thierry Baron,et al.  Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. , 2017, Optics express.

[38]  J. Lee,et al.  Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates , 1987 .

[39]  M. Lee,et al.  Threading dislocation density characterization in III–V photovoltaic materials by electron channeling contrast imaging , 2016 .

[40]  M. Yamaguchi,et al.  Residual strains in heteroepitaxial III-V semiconductor films on Si(100) substrates , 1989 .

[41]  Rahul Kumar,et al.  Investigation of cross-hatch surface and study of anisotropic relaxation and dislocation on InGaAs on GaAs (001) , 2016, Electronic Materials Letters.

[42]  H. Okamoto,et al.  Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices , 1987 .

[43]  B. G. Yacobi,et al.  Dislocation density reduction through annihilation in lattice-mismatched semiconductors grown by molecular-beam epitaxy , 1988 .

[44]  K. Asai,et al.  Dynamical Formation Process of Pure Edge Misfit Dislocations at GaAs/Si Interfaces in Post-Annealing , 1994 .

[45]  W. Pompe,et al.  Modeling of Threading Dislocation Density Reduction in Heteroepitaxial Layers I. Geometry and Crystallography , 1996 .