An M-Objective Penalty Function Algorithm Under Big Penalty Parameters

Some classical penalty function algorithms may not always be convergent under big penalty parameters in Matlab software, which makes them impossible to find out an optimal solution to constrained optimization problems. In this paper, a novel penalty function (called M-objective penalty function) with one penalty parameter added to both objective and constrained functions of inequality constrained optimization problems is proposed. Based on the M-objective penalty function, an algorithm is developed to solve an optimal solution to the inequality constrained optimization problems, with its convergence proved under some conditions. Furthermore, numerical results show that the proposed algorithm has a much better convergence than the classical penalty function algorithms under big penalty parameters, and is efficient in choosing a penalty parameter in a large range in Matlab software.

[1]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[2]  W. Zangwill Non-Linear Programming Via Penalty Functions , 1967 .

[3]  L. Grippo,et al.  An exact penalty function method with global convergence properties for nonlinear programming problems , 1986, Math. Program..

[4]  A. Sartenaer,et al.  Automatic decrease of the penalty parameter in exact penalty function methods , 1995 .

[5]  Chuangyin Dang,et al.  A penalty function algorithm with objective parameters for nonlinear mathematical programming , 2009 .

[6]  Xiaoqi Yang,et al.  On the Smoothing of the Square-Root Exact Penalty Function for Inequality Constrained Optimization , 2006, Comput. Optim. Appl..

[7]  Olvi L. Mangasarian,et al.  Exact penalty functions in nonlinear programming , 1979, Math. Program..

[8]  Nelson Maculan,et al.  A Boolean Penalty Method for Zero-One Nonlinear Programming , 2000, J. Glob. Optim..

[9]  J. Burke An exact penalization viewpoint of constrained optimization , 1991 .

[10]  H. G. Kahlbacher Scheduling with monotonous earliness and tardiness penalties , 1993 .

[11]  X. X. Huang,et al.  A Nonlinear Lagrangian Approach to Constrained Optimization Problems , 2000, SIAM J. Optim..

[12]  D. D. Morrison Optimization by Least Squares , 1968 .

[13]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[14]  X. Q. Yang,et al.  Decreasing Functions with Applications to Penalization , 1999, SIAM J. Optim..

[15]  Liqun Qi,et al.  Semismooth Newton Methods for Solving Semi-Infinite Programming Problems , 2003, J. Glob. Optim..

[16]  Eric Rosenberg,et al.  Globally Convergent Algorithms for Convex Programming , 1981, Math. Oper. Res..

[17]  S. Zenios,et al.  A smooth penalty function algorithm for network-structured problems , 1995 .

[18]  Han-Lin Li,et al.  An approximate method for local optima for nonlinear mixed integer programming problems , 1992, Comput. Oper. Res..

[19]  Jorge Nocedal,et al.  A line search exact penalty method using steering rules , 2010, Mathematical Programming.

[20]  Xiaoqi Yang,et al.  Duality and Exact Penalization for Vector Optimization via Augmented Lagrangian , 2001 .

[21]  Xiaoqi Yang,et al.  Extended Lagrange And Penalty Functions in Continuous Optimization , 1999 .

[22]  Mustafa Ç. Pinar,et al.  On Smoothing Exact Penalty Functions for Convex Constrained Optimization , 1994, SIAM J. Optim..

[23]  Xiaoqi Yang,et al.  Smoothing Nonlinear Penalty Functions for Constrained Optimization Problems , 2003 .

[24]  Kok Lay Teo,et al.  Computational Discretization Algorithms for Functional Inequality Constrained Optimization , 2000, Ann. Oper. Res..

[25]  Eric Rosenberg,et al.  Exact penalty functions and stability in locally Lipschitz programming , 1984, Math. Program..