A Hierarchical Space-Time Spectral Element and Moment-of-Fluid Method for Improved Capturing of Vortical Structures in Incompressible Multi-phase/Multi-material Flows

A novel block structured adaptive space-time spectral element and moment-of-fluid method is described for computing solutions to incompressible multi-phase/multi-material flows. The new method implements a space-time spectrally accurate method in the bulk regions of a multi-phase/multi-material flow and implements the cell integrated semi-Lagrangian moment-of-fluid method in the vicinity of mixed material computational cells. In the new method, the space-time order can be prescribed to be $$2\le p_{\ell }^{(x)}\le 16$$ (space) and $$2\le p^{(t)}\le 16$$ (time) respectively. $$\ell $$ represents the adaptive mesh refinement level. Regardless of the space-time order, only one ghost layer of cells is communicated between neighboring grid patches that are on different compute nodes or different adaptive levels $$\ell $$. The new method is first tested on incompressible vortical flow benchmark tests, then the new method is tested on the following incompressible multi-phase/multi-material problems: (i) vortex shedding past a tilted cone and (ii) atomization and spray of a liquid jet in a gas cross-flow.

[1]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[2]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[3]  Weizhu Bao,et al.  Weakly compressible high-order I-stable central difference schemes for incompressible viscous flows , 2001 .

[4]  Gerard L. G. Sleijpen,et al.  Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.

[5]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[6]  Mark Sussman,et al.  New Multi-implicit Space–Time Spectral Element Methods for Advection–Diffusion–Reaction Problems , 2019, J. Sci. Comput..

[7]  Stability of Rotating Viscous and Inviscid flows , 2005, physics/0503083.

[8]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[9]  Sander Rhebergen,et al.  A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2013, J. Comput. Phys..

[10]  Edriss S. Titi,et al.  On the evolution of nearly circular vortex patches , 1988 .

[11]  Farzad Mashayek,et al.  Shock capturing with entropy-based artificial viscosity for staggered grid discontinuous spectral element method , 2014 .

[12]  Richard E. Brown,et al.  Efficient High-Resolution Wake Modeling Using the Vorticity Transport Equation , 2004 .

[13]  A. S. Almgren,et al.  A deferred correction coupling strategy for low Mach number flow with complex chemistry , 2012 .

[14]  Mark Sussman,et al.  Adaptive solution techniques for simulating underwater explosions and implosions , 2008, J. Comput. Phys..

[15]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[16]  D. R. Fokkema,et al.  BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .

[17]  Alessandro Curioni,et al.  Billion vortex particle direct numerical simulations of aircraft wakes , 2008 .

[18]  Jian-Guo Liu,et al.  Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry , 2004 .

[19]  Jonathan D. Regele,et al.  An interface capturing scheme for modeling atomization in compressible flows , 2017, J. Comput. Phys..

[20]  M. Soteriou,et al.  High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers , 2016 .

[21]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[22]  Qinghai Zhang,et al.  GePUP: Generic Projection and Unconstrained PPE for Fourth-Order Solutions of the Incompressible Navier–Stokes Equations with No-Slip Boundary Conditions , 2016, J. Sci. Comput..

[23]  Peng Li,et al.  Hybrid Compact-WENO Finite Difference Scheme with Conjugate Fourier Shock Detection Algorithm for Hyperbolic Conservation Laws , 2016, SIAM J. Sci. Comput..

[24]  D. Lakehal,et al.  Interface-turbulence interactions in large-scale bubbling processes , 2007 .

[25]  John Shalf,et al.  BoxLib with Tiling: An Adaptive Mesh Refinement Software Framework , 2016, SIAM J. Sci. Comput..

[26]  David A. Kopriva,et al.  A Conservative Isothermal Wall Boundary Condition for the Compressible Navier–Stokes Equations , 2007, J. Sci. Comput..

[27]  Michael L. Minion,et al.  A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics , 2008, J. Comput. Phys..

[28]  J. V. D. Vegt,et al.  A space--time discontinuous Galerkin method for the time-dependent Oseen equations , 2008 .

[29]  Frédéric Risso,et al.  On the computation of viscous terms for incompressible two-phase flows with Level Set/Ghost Fluid Method , 2015, J. Comput. Phys..

[30]  D. Lakehal Status and future developments of Large-Eddy Simulation of turbulent multi-fluid flows (LEIS and LESS) , 2018, International Journal of Multiphase Flow.

[31]  Michael L. Minion,et al.  Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics , 2004 .

[32]  Jaap J. W. van der Vegt,et al.  Space-Time Discontinuous Galerkin Method for the Compressible Navier-Stokes , 2006 .

[33]  Anita T. Layton,et al.  On the choice of correctors for semi-implicit Picard deferred correction methods , 2008 .

[34]  Y. Namekawa,et al.  An improvement in DS-BiCGstab( l ) and its application for linear systems in lattice QCD , 2003 .

[35]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[36]  M. Rudman,et al.  A 3D unsplit-advection volume tracking algorithm with planarity-preserving interface reconstruction , 2006 .

[37]  Anita T. Layton,et al.  On the efficiency of spectral deferred correction methods for time-dependent partial differential equations , 2009 .

[38]  Brian van Straalen,et al.  A survey of high level frameworks in block-structured adaptive mesh refinement packages , 2014, J. Parallel Distributed Comput..

[39]  Yongsheng Lian,et al.  Incompressible multiphase flow and encapsulation simulations using the moment-of-fluid method , 2015 .

[40]  M. Sussman,et al.  A Space-Time Discontinuous Galerkin Spectral Element Method for Nonlinear Hyperbolic Problems , 2018, International Journal of Computational Methods.

[41]  J. Baeder,et al.  Numerical simulation of tip vortices of wings in subsonic and transonic flows , 1988 .

[42]  Robert Saye Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I , 2017, J. Comput. Phys..

[43]  Michael Dumbser,et al.  ADER-WENO finite volume schemes with space-time adaptive mesh refinement , 2012, J. Comput. Phys..

[44]  Chi-Wang Shu,et al.  A High-Order Discontinuous Galerkin Method for 2D Incompressible Flows , 2000 .

[45]  Richard E. Brown,et al.  Rotor Wake Modeling for Flight Dynamic Simulation of Helicopters , 2000 .

[46]  S. Zaleski,et al.  Interface reconstruction with least‐square fit and split Eulerian–Lagrangian advection , 2003 .

[47]  Marcus Day,et al.  A high-order spectral deferred correction strategy for low Mach number flow with complex chemistry , 2015, 1512.06459.

[48]  Marc I. Gerritsma,et al.  A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations , 2016, J. Comput. Phys..

[49]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[50]  H. Dou Mechanism of flow instability and transition to turbulence , 2006 .

[51]  Hong Zhang,et al.  Hierarchical Krylov and nested Krylov methods for extreme-scale computing , 2014, Parallel Comput..

[52]  Mark Sussman,et al.  An Improved Sharp Interface Method for Viscoelastic and Viscous Two-Phase Flows , 2008, J. Sci. Comput..

[53]  Mark Sussman,et al.  Compressible, multiphase semi-implicit method with moment of fluid interface representation , 2014, J. Comput. Phys..

[54]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[55]  J. Steinhoff,et al.  Modification of the Euler equations for ‘‘vorticity confinement’’: Application to the computation of interacting vortex rings , 1994 .

[56]  M. Sussman,et al.  A space-time discontinuous Galerkin spectral element method for the Stefan problem , 2017 .

[57]  M. Arienti,et al.  An embedded level set method for sharp-interface multiphase simulations of Diesel injectors , 2014 .

[58]  John B. Bell,et al.  On the Use of Higher-Order Projection Methods for Incompressible Turbulent Flow , 2013, SIAM J. Sci. Comput..

[59]  A. Bourlioux,et al.  High-order multi-implicit spectral deferred correction methods for problems of reactive flow , 2003 .

[60]  Michael Dumbser,et al.  Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier-Stokes equations on staggered Cartesian grids , 2016, 1602.05806.

[61]  Andrew M. Wissink,et al.  Feature-driven Cartesian adaptive mesh refinement for vortex-dominated flows , 2011, J. Comput. Phys..

[62]  Wang Haowen,et al.  Simulating unsteady aerodynamics of helicopter rotor with panel/viscous vortex particle method , 2013 .

[63]  Jaap J. W. van der Vegt,et al.  Space-time discontinuous Galerkin finite element method for two-fluid flows , 2011, J. Comput. Phys..

[64]  Marsha Berger,et al.  Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..