Majority is stablest: discrete and SoS

The Majority is Stablest Theorem has numerous applications in hardness of approximation and social choice theory. We give a new proof of the Majority is Stablest Theorem by induction on the dimension of the discrete cube. Unlike the previous proof, it uses neither the "invariance principle" nor Borell's result in Gaussian space. The new proof is general enough to include all previous variants of majority is stablest such as "it ain't over until it's over" and "Majority is most predictable". Moreover, the new proof allows us to derive a proof of Majority is Stablest in a constant level of the Sum of Squares hierarchy. This implies in particular that Khot-Vishnoi instance of Max-Cut does not provide a gap instance for the Lasserre hierarchy.

[1]  Gil Kalai,et al.  A Fourier-theoretic perspective on the Condorcet paradox and Arrow's theorem , 2002, Adv. Appl. Math..

[2]  Noam Nisan,et al.  Elections Can be Manipulated Often , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[3]  A KhotSubhash,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative-Type Metrics into ℓ1 , 2015 .

[4]  J. Bourgain On the distribution of the fourier spectrum of Boolean functions , 2002 .

[5]  Gil Kalai,et al.  NOTES AND COMMENTS: SOCIAL INDETERMINACY , 2004 .

[6]  Marie-Françoise Roy,et al.  The Positivstellensatz and Small Deduction Rules for Systems of Inequalities , 1996 .

[7]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[8]  Subhash Khot,et al.  SDP Integrality Gaps with Local ell_1-Embeddability , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[9]  Elchanan Mossel,et al.  A quantitative Arrow theorem , 2009, 0903.2574.

[10]  Elchanan Mossel,et al.  Conditional Hardness for Approximate Coloring , 2009, SIAM J. Comput..

[11]  Nathan Linial,et al.  The Influence of Variables on Boolean Functions (Extended Abstract) , 1988, FOCS 1988.

[12]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[13]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .

[14]  Prasad Raghavendra,et al.  Optimal algorithms and inapproximability results for every CSP? , 2008, STOC.

[15]  A. Bonami Étude des coefficients de Fourier des fonctions de $L^p(G)$ , 1970 .

[16]  N. Z. Shor Class of global minimum bounds of polynomial functions , 1987 .

[17]  D. Hilbert,et al.  Ueber die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .

[18]  J. Krivine,et al.  Anneaux préordonnés , 1964 .

[19]  Yuan Zhou,et al.  Approximability and proof complexity , 2012, SODA.

[20]  George G. Lorentz,et al.  Deferred Bernstein polynomials , 1951 .

[21]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[22]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[23]  C. Borell Geometric bounds on the Ornstein-Uhlenbeck velocity process , 1985 .

[24]  M. Talagrand On Russo's Approximate Zero-One Law , 1994 .

[25]  Ryan O'Donnell,et al.  Gaussian noise sensitivity and Fourier tails , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[26]  Dima Grigoriev,et al.  Complexity of Null-and Positivstellensatz proofs , 2001, Ann. Pure Appl. Log..

[27]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[28]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[29]  Elchanan Mossel Gaussian Bounds for Noise Correlation of Functions , 2007, FOCS 2007.

[30]  Elchanan Mossel,et al.  Noise stability of functions with low influences: Invariance and optimality , 2005, IEEE Annual Symposium on Foundations of Computer Science.

[31]  Elchanan Mossel,et al.  New Maximally Stable Gaussian Partitions with Discrete Applications , 2009 .

[32]  M. Ledoux,et al.  Lévy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator , 1996 .

[33]  Per Austrin,et al.  Balanced max 2-sat might not be the hardest , 2007, STOC '07.

[34]  Prasad Raghavendra,et al.  Integrality Gaps for Strong SDP Relaxations of UNIQUE GAMES , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[35]  Yuan Zhou,et al.  Hypercontractivity, sum-of-squares proofs, and their applications , 2012, STOC '12.

[36]  W. Sheppard On the Application of the Theory of Error to Cases of Normal Distribution and Normal Correlation , 1899 .

[37]  Ryan O'Donnell,et al.  Analysis of Boolean Functions , 2014, ArXiv.

[38]  Elchanan Mossel,et al.  Maximally stable Gaussian partitions with discrete applications , 2009, 0903.3362.

[39]  Dan S. Felsenthal,et al.  The measurement of voting power , 1998 .

[40]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[41]  S. Bobkov An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space , 1997 .

[42]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[43]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[44]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[45]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[46]  Gyanit Singh,et al.  Improved Approximation Guarantees through Higher Levels of SDP Hierarchies , 2008, APPROX-RANDOM.

[47]  Subhash Khot,et al.  Approximate Lasserre Integrality Gap for Unique Games , 2010, APPROX-RANDOM.

[48]  Nisheeth K. Vishnoi,et al.  Integrality gaps for sparsest cut and minimum linear arrangement problems , 2006, STOC '06.

[49]  Dima Grigoriev,et al.  Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity , 2001, Theor. Comput. Sci..

[50]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[51]  Vaithilingam Jeyakumar,et al.  On Polynomial Optimization Over Non-compact Semi-algebraic Sets , 2013, J. Optim. Theory Appl..

[52]  Subhash Khot On the power of unique 2-prover 1-round games , 2002, STOC '02.

[53]  Luca Trevisan,et al.  Gowers Uniformity, Influence of Variables, and PCPs , 2009, SIAM J. Comput..

[54]  W. Beckner Inequalities in Fourier analysis , 1975 .

[55]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[56]  Elchanan Mossel,et al.  Robust Optimality of Gaussian Noise Stability , 2012, 1210.4126.

[57]  G. Kalai,et al.  Every monotone graph property has a sharp threshold , 1996 .

[58]  Ryan O'Donnell,et al.  An optimal sdp algorithm for max-cut, and equally optimal long code tests , 2008, STOC.

[59]  Y. Nesterov Global quadratic optimization via conic relaxation , 1998 .

[60]  Prasad Raghavendra,et al.  Rounding Semidefinite Programming Hierarchies via Global Correlation , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.