Optical processing based on conditional higher-order trinary modified signed-digit symbolic substitution.

Techniques for higher-order modified signed-digit trinary arithmetic by using optical symbolic substitution are presented. This method provides fast multibit computation by adopting a two-step symbolicsubstitution scheme. Since more information is represented in fewer digits, this technique leads to a compact design. A content-addressable memory-based and a joint transform correlator-based optical implemention for the proposed technique are also presented.

[1]  Algirdas Avizienis,et al.  Signed-Digit Numbe Representations for Fast Parallel Arithmetic , 1961, IRE Trans. Electron. Comput..

[2]  J W Goodman,et al.  Optical computation using residue arithmetic. , 1979, Applied optics.

[3]  Alan Huang Parallel Algormiivls For Optical Digital Computers , 1983, Other Conferences.

[4]  Thomas K. Gaylord,et al.  Optical Digital Truth Table Look-Up Processing , 1985 .

[5]  Hiroto Yasuura,et al.  High-Speed VLSI Multiplication Algorithm with a Redundant Binary Addition Tree , 1985, IEEE Transactions on Computers.

[6]  Thomas K. Gaylord,et al.  Truth-table look-up processing: number representation, multilevel coding, and logical minimization , 1986 .

[7]  T B Henderson,et al.  Modified signed-digit addition and subtraction using optical symbolic substitution. , 1986, Applied optics.

[8]  T K Gaylord,et al.  Truth-table look-up parallel data processing using an optical content-addressable memory. , 1986, Applied optics.

[9]  W. Miceli,et al.  Photonic computing using the modified signed-digit number representation , 1986 .

[10]  T K Gaylord,et al.  Logical minimization of multilevel coded functions. , 1986, Applied optics.

[11]  Y Li,et al.  Conditional symbolic modified signed-digit arithmetic using optical content-addressable memory logic elements. , 1987, Applied optics.

[12]  B. Javidi,et al.  Joint transform image correlation using a binary spatial light modulator at the Fourier plane. , 1988, Applied optics.

[13]  K H Brenner,et al.  Optical symbolic substitution: system design using phase-only holograms. , 1988, Applied optics.

[14]  M A Karim,et al.  Modified-signed digit arithmetic using an efficient symbolic substitution. , 1988, Applied optics.

[15]  S. P. Kozaitis Higher-ordered rules for symbolic substitution , 1988 .

[16]  D Casasent,et al.  Optical symbolic substitution using multichannel correlators. , 1988, Applied optics.

[17]  Karl-Heinz Brenner,et al.  Symbolic Substitution Implemented By Spatial Filtering Logic , 1989 .

[18]  Abdallah K. Cherri,et al.  Symbolic substitution based flagged arithmetic unit design using polarization-encoded optical shadow-casting system , 1989 .

[19]  Kai Hwang,et al.  Optical Multiplication And Division Using Modified-Signed-Digit Symbolic Substitution , 1989 .

[20]  M A Karim,et al.  Polarization-encoded optical shadow-casting: direct implementation of a carry-free adder. , 1989, Applied optics.

[21]  Karl-Heinz Brenner,et al.  Digital Optical Computing With Symbolic Substitution , 1989, Other Conferences.

[22]  Mohammad A. Karim,et al.  Symbolic-substitution-based operations using holograms: multiplication and histogram equalization , 1989 .

[23]  D A Gregory,et al.  Effects of fringe binarization of multiobject joint transform correlation. , 1989, Applied optics.

[24]  R Thalmann,et al.  Optical symbolic substitution using diffraction gratings. , 1990, Applied optics.

[25]  Y Li,et al.  Optical higher-order symbolic recognition. , 1990, Applied optics.

[26]  Mohammad A. Karim,et al.  Improved correlation discrimination using joint fourier‐transform optical correlator , 1991 .