A preliminary design procedure for an ion-beam shepherd mission

Abstract The “ion-beam shepherd” (IBS) is a contactless active space debris removal technique, also applicable to asteroid deflection. In the design of an IBS mission many constraints need to be considered, which involve multiple trade-offs. These constraints can be expressed analytically as a function of certain design parameters, and conveniently displayed in a two-dimensional parameter space or design space. This construction yields a “matching chart”, which effectively provides a feasible design envelope, and enables to find graphically a suitable design point that satisfies all applicable operational constraints simultaneously, thus providing a powerful tool tailored for the preliminary design of an IBS mission.

[1]  Stephan Rudolph,et al.  Rule-based spacecraft design space exploration and sensitivity analysis , 2016 .

[2]  J. Liou An active debris removal parametric study for LEO environment remediation , 2011 .

[3]  J.-C. Liou,et al.  A sensitivity study of the effectiveness of active debris removal in LEO , 2009 .

[4]  O. B. Mantenieks,et al.  A Review of Low Energy Sputtering Theory and Experiments , 1997 .

[5]  Eberhard Gill,et al.  Review and comparison of active space debris capturing and removal methods , 2016 .

[6]  N. Johnson,et al.  Instability of the Present LEO Satellite Populations , 2008 .

[7]  F. Cichocki,et al.  Electric Propulsion Subsystem Optimization for “Ion Beam Shepherd” Missions , 2017 .

[8]  Hodei Urrutxua Cereijo High Fidelity Models for Near-Earth Object Dynamics , 2015 .

[9]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[10]  C. Bombardelli,et al.  Ion Beam Shepherd for Asteroid Deflection , 2011, 1102.1276.

[11]  Hugh G. Lewis,et al.  An adaptive strategy for active debris removal , 2014 .

[12]  J. E. Polk,et al.  NSTAR Xenon Ion Thruster on Deep Space 1: Ground and flight tests (invited) , 2000 .

[13]  N. Johnson,et al.  Risks in Space from Orbiting Debris , 2006, Science.

[14]  Z. Zhang,et al.  Anisotropic angular distribution of sputtered atoms , 2004 .

[15]  P Sigmund,et al.  スパッタの理論 I 非晶質のスパッタ収量と多結晶ターゲット , 1969 .

[16]  A. A. Fokov,et al.  Determination of the force transmitted by an ion thruster plasma plume to an orbital object , 2016 .

[17]  F. Cichocki,et al.  Spacecraft-plasma-debris interaction in an ion beam shepherd mission , 2018 .

[18]  Stephan Rudolph,et al.  Modeling graph-based satellite design languages , 2016 .

[19]  Eduardo Ahedo,et al.  A collisionless plasma thruster plume expansion model , 2015 .

[20]  Adam E. White,et al.  The many futures of active debris removal , 2014 .

[21]  Todd Mosher,et al.  Conceptual Spacecraft Design Using a Genetic Algorithm Trade Selection Process , 1999 .

[22]  C. Bombardelli,et al.  Ion Beam Shepherd for Contactless Space Debris Removal , 2011, 1102.1289.

[23]  E. Torenbeek,et al.  Synthesis of Subsonic Airplane Design , 1979 .

[24]  J. Álvarez,et al.  Relative Dynamics and Control of an Ion Beam Shepherd Satellite , 2012 .

[25]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[26]  J.-C. Liou,et al.  Controlling the growth of future LEO debris populations with active debris removal , 2010 .

[27]  M. Merino,et al.  THE ION BEAM SHEPHERD: A NEW CONCEPT FOR ASTEROID DEFLECTION , 2013 .

[28]  Alan C. Tribble,et al.  Contamination control engineering design guidelines for the aerospace community , 1996, Optics & Photonics.