HIV-1 IN/Pol recruits LEDGF/p75 into viral particles

[1]  S. Ekker,et al.  TALEN Knockout of the PSIP1 Gene in Human Cells: Analyses of HIV-1 Replication and Allosteric Integrase Inhibitor Mechanism , 2014, Journal of Virology.

[2]  F. Bushman,et al.  Allosteric Inhibition of Human Immunodeficiency Virus Integrase , 2014, The Journal of Biological Chemistry.

[3]  F. Bushman,et al.  A New Class of Multimerization Selective Inhibitors of HIV-1 Integrase , 2014, PLoS pathogens.

[4]  A. Saïb,et al.  Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage , 2013, Retrovirology.

[5]  S. Yant,et al.  Non-Catalytic Site HIV-1 Integrase Inhibitors Disrupt Core Maturation and Induce a Reverse Transcription Block in Target Cells , 2013, PloS one.

[6]  C. Weydert,et al.  LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions , 2013, Retrovirology.

[7]  A. Engelman,et al.  The A128T Resistance Mutation Reveals Aberrant Protein Multimerization as the Primary Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors* , 2013, The Journal of Biological Chemistry.

[8]  A. Engelman,et al.  Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation , 2013, Proceedings of the National Academy of Sciences.

[9]  M. Humbert,et al.  Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[10]  F. Bushman,et al.  HRP-2 determines HIV-1 integration site selection in LEDGF/p75 depleted cells , 2012, Retrovirology.

[11]  A. Engelman,et al.  HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor , 2012, Nucleic acids research.

[12]  S. Nekhai,et al.  Virus-producing cells determine the host protein profiles of HIV-1 virion cores , 2012, Retrovirology.

[13]  P. Sorensen,et al.  LEDGF (p75) promotes DNA-end resection and homologous recombination , 2012, Nature Structural &Molecular Biology.

[14]  Stephen M. Shaw,et al.  Small-Molecule Inhibitors of the LEDGF/p75 Binding Site of Integrase Block HIV Replication and Modulate Integrase Multimerization , 2012, Antimicrobial Agents and Chemotherapy.

[15]  R. Gijsbers,et al.  Lens epithelium-derived growth factor/p75 qualifies as a target for HIV gene therapy in the NSG mouse model. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[16]  Jernej Ule,et al.  Psip1/Ledgf p52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the Regulation of Alternative Splicing , 2012, PLoS genetics.

[17]  B. Devaux,et al.  Differential Proteomic Analysis of Human Glioblastoma and Neural Stem Cells Reveals HDGF as a Novel Angiogenic Secreted Factor , 2012, Stem cells.

[18]  Xiaohong Liu,et al.  New Class of HIV-1 Integrase (IN) Inhibitors with a Dual Mode of Action , 2012, The Journal of Biological Chemistry.

[19]  A. Engelman,et al.  Multimode, Cooperative Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors* , 2012, The Journal of Biological Chemistry.

[20]  F. Bushman,et al.  LEDGF/p75-Independent HIV-1 Replication Demonstrates a Role for HRP-2 and Remains Sensitive to Inhibition by LEDGINs , 2012, PLoS pathogens.

[21]  C. Tintori,et al.  Development of an AlphaScreen-Based HIV-1 Integrase Dimerization Assay for Discovery of Novel Allosteric Inhibitors , 2012, Journal of biomolecular screening.

[22]  John H. Morris,et al.  Global landscape of HIV–human protein complexes , 2011, Nature.

[23]  Jelle Hendrix,et al.  In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. , 2011, Journal of molecular biology.

[24]  Yingfeng Zheng,et al.  Host Protein Ku70 Binds and Protects HIV-1 Integrase from Proteasomal Degradation and Is Required for HIV Replication* , 2011, The Journal of Biological Chemistry.

[25]  J. Hofkens,et al.  The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering , 2010, Nucleic acids research.

[26]  A. Marchand,et al.  Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. , 2010, Nature chemical biology.

[27]  C. Gilbert,et al.  Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. , 2008, Journal of immunological methods.

[28]  J. Lieberman,et al.  Identification and Characterization of PWWP Domain Residues Critical for LEDGF/p75 Chromatin Binding and Human Immunodeficiency Virus Type 1 Infectivity , 2008, Journal of Virology.

[29]  Akihiko Yokoyama,et al.  Menin critically links MLL proteins with LEDGF on cancer-associated target genes. , 2008, Cancer cell.

[30]  D. Ott,et al.  Cellular proteins detected in HIV‐1 , 2008, Reviews in medical virology.

[31]  Kuo-Chen Chou,et al.  HIVcleave: a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins. , 2008, Analytical biochemistry.

[32]  R. Benarous,et al.  Differential interaction of HIV-1 integrase and JPO2 with the C terminus of LEDGF/p75. , 2007, Journal of molecular biology.

[33]  A. Engelman,et al.  LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. , 2007, Genes & development.

[34]  J. Rain,et al.  Identification of the LEDGF/p75 binding site in HIV-1 integrase. , 2007, Journal of molecular biology.

[35]  Wulin Teo,et al.  An Essential Role for LEDGF/p75 in HIV Integration , 2006, Science.

[36]  K. Nagashima,et al.  Proteomic and Biochemical Analysis of Purified Human Immunodeficiency Virus Type 1 Produced from Infected Monocyte-Derived Macrophages , 2006, Journal of Virology.

[37]  A. Engelman,et al.  Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin , 2006, Journal of Cell Science.

[38]  C. Van den Haute,et al.  Transient and Stable Knockdown of the Integrase Cofactor LEDGF/p75 Reveals Its Role in the Replication Cycle of Human Immunodeficiency Virus , 2006, Journal of Virology.

[39]  Paul Shinn,et al.  A role for LEDGF/p75 in targeting HIV DNA integration , 2005, Nature Medicine.

[40]  A. Engelman,et al.  Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  V. Baekelandt,et al.  Upscaling of lentiviral vector production by tangential flow filtration , 2005, The journal of gene medicine.

[42]  Pamela A. Silver,et al.  Identification of an Evolutionarily Conserved Domain in Human Lens Epithelium-derived Growth Factor/Transcriptional Co-activator p75 (LEDGF/p75) That Binds HIV-1 Integrase* , 2004, Journal of Biological Chemistry.

[43]  Marc C. Johnson,et al.  The stoichiometry of Gag protein in HIV-1 , 2004, Nature Structural &Molecular Biology.

[44]  G. Kalpana,et al.  Specificity of Interaction of INI1/hSNF5 with Retroviral Integrases and Its Functional Significance , 2004, Journal of Virology.

[45]  E. De Clercq,et al.  LEDGF/p75 Is Essential for Nuclear and Chromosomal Targeting of HIV-1 Integrase in Human Cells* , 2003, Journal of Biological Chemistry.

[46]  Zeger Debyser,et al.  HIV-1 Integrase Forms Stable Tetramers and Associates with LEDGF/p75 Protein in Human Cells* , 2003, The Journal of Biological Chemistry.

[47]  T. Daniels,et al.  Caspase cleavage of the nuclear autoantigen LEDGF/p75 abrogates its pro-survival function: implications for autoimmunity in atopic disorders , 2002, Cell Death and Differentiation.

[48]  P. Mangeot,et al.  High levels of transduction of human dendritic cells with optimized SIV vectors. , 2002, Molecular therapy : the journal of the American Society of Gene Therapy.

[49]  L. Chylack,et al.  Lens epithelium-derived growth factor: effects on growth and survival of lens epithelial cells, keratinocytes, and fibroblasts. , 2000, Biochemical and biophysical research communications.

[50]  R. Roeder,et al.  Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation , 1998, The EMBO journal.

[51]  K. Weber,et al.  The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. , 1969, The Journal of biological chemistry.

[52]  K. Courtney,et al.  A new and rapid colorimetric determination of acetylcholinesterase activity. , 1961, Biochemical pharmacology.