Asymmetric hydrogenation of α- and β-enamido phosphonates: rhodium(I)/monodentate phosphoramidite catalyst.
暂无分享,去创建一个
Zheng Wang | Yang Li | K. Ding | Jinzhu Zhang
[1] 王正,et al. Asymmetric Hydrogenation of a- and ss-Enamido Phosphonates: Rhodium(I)/Monodentate Phosphoramidite Catalyst , 2011 .
[2] E. Rys,et al. Asymmetric hydrogenation of (E)-dimethyl-2-acetamido-2-phenylvinylphosphonate in supercritical carbon dioxide in the presence of metal complex catalysts with phosphite-type ligands , 2010 .
[3] J. Reek,et al. Supramolecular catalysis beyond enzyme mimics. , 2010, Nature chemistry.
[4] Xumu Zhang,et al. Transition Metal‐Catalyzed Homogeneous Asymmetric Hydrogenation , 2010 .
[5] G. Sello,et al. Aminophosphonic acids and derivatives. Synthesis and biological applications. , 2010, Current medicinal chemistry.
[6] K. Troev,et al. Recent synthesis of aminophosphonic acids as potential biological importance , 2010, Amino Acids.
[7] J. Reek,et al. Asymmetric hydrogenation of enamides, alpha-enol and alpha-enamido ester phosphonates catalyzed by IndolPhos-Rh complexes. , 2009, The Journal of organic chemistry.
[8] S. Westcott,et al. Rhodium complexes of (R)-Me-CATPHOS and (R)-(S)-JOSIPHOS: highly enantioselective catalysts for the asymmetric hydrogenation of (E)- and (Z)-β-aryl-β-(enamido)phosphonates , 2009 .
[9] T. Satyanarayana,et al. Nichtlineare Effekte in der asymmetrischen Katalyse , 2009 .
[10] C. Cativiela,et al. An Overview of Stereoselective Synthesis of α-Aminophosphonic Acids and Derivatives. , 2009, Tetrahedron.
[11] Henri B Kagan,et al. Nonlinear effects in asymmetric catalysis. , 2009, Angewandte Chemie.
[12] A. Börner,et al. Synthesis of chiral β-aminophosphonates via Rh-catalyzed asymmetric hydrogenation of β-amido-vinylphosphonates , 2008 .
[13] Qi‐Lin Zhou,et al. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions. , 2008, Accounts of chemical research.
[14] Sai-Bo Yu,et al. Readily available chiral phosphine-aminophosphine ligands for highly efficient Rh-catalyzed asymmetric hydrogenation of alpha-enol ester phosphonates and alpha-enamido phosphonates. , 2008, The Journal of organic chemistry.
[15] B. Feringa,et al. Asymmetric hydrogenation using monodentate phosphoramidite ligands. , 2007, Accounts of chemical research.
[16] Zheng Wang,et al. Hydrogen bonding makes a difference in the rhodium-catalyzed enantioselective hydrogenation using monodentate phosphoramidites. , 2006, Journal of the American Chemical Society.
[17] Jun‐An Ma. Catalytic asymmetric synthesis of alpha- and beta-amino phosphonic acid derivatives. , 2006, Chemical Society reviews.
[18] K. Ding,et al. Modular monodentate phosphoramidite ligands for rhodium-catalyzed enantioselective hydrogenation. , 2005, Journal of the American Chemical Society.
[19] F. Palacios,et al. Synthesis of β-Aminophosphonates and -Phosphinates , 2005 .
[20] M. Reetz,et al. Binol-derived monodentate phosphites and phosphoramidites with phosphorus stereogenic centers: novel ligands for transition-metal catalysis. , 2005, Angewandte Chemie.
[21] Shou‐Fei Zhu,et al. Rhodium-catalyzed asymmetric hydrogenation of functionalized olefins using monodentate spiro phosphoramidite ligands. , 2004, The Journal of organic chemistry.
[22] I. Beletskaya,et al. Asymmetric hydrogenation of α,β-unsaturated phosphonates with Rh-BisP* and Rh-MiniPHOS catalysts: Scope and mechanism of the reaction , 2004 .
[23] M. T. Reetz,et al. Ein neuartiges Prinzip in der kombinatorischen asymmetrischen Übergangsmetall-Katalyse: Mischungen von chiralen einzähnigen P-Liganden† , 2003 .
[24] M. Reetz,et al. A new principle in combinatorial asymmetric transition-metal catalysis: mixtures of chiral monodentate P ligands. , 2003, Angewandte Chemie.
[25] Hai‐Feng Zhou,et al. Monodentate chiral spiro phosphoramidites: efficient ligands for rhodium-catalyzed enantioselective hydrogenation of enamides. , 2002, Angewandte Chemie.
[26] G. Petsko,et al. Inhibition of the aminopeptidase from Aeromonas proteolytica by L-leucinephosphonic acid. Spectroscopic and crystallographic characterization of the transition state of peptide hydrolysis. , 2001, Biochemistry.
[27] A. Alexakis,et al. Synthesis and Application of Chiral Phosphorus Ligands Derived from TADDOL for the Asymmetric Conjugate Addition of Diethyl Zinc to Enones , 2000 .
[28] M. Burk,et al. Enantioselective Synthesis of α-Hydroxy and α-Amino Phosphonates via Catalytic Asymmetric Hydrogenation , 1999 .
[29] Christian Girard,et al. Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation. , 1998, Angewandte Chemie.
[30] H. B. Kagan,et al. Nichtlineare Effekte bei asymmetrischen Synthesen und stereoselektiven Reaktionen , 1998 .
[31] K. Drauz,et al. Synthesis of Optically Active α-Amino- phosphinic Acids by Catalytic Asymmetric Hydrogenation in Organic Solvents and Aqueous Micellar Media. , 1998, Angewandte Chemie.
[32] C. Fischer,et al. Herstellung optisch aktiver α‐Aminophosphinsäuren durch asymmetrische katalytische Hydrierung in organischen Lösungsmitteln und wäßrig‐micellarem Medium , 1998 .
[33] V. Soloshonok,et al. Asymmetric Synthesis of Phosphorus Analogs of Amino Acids , 1994 .
[34] Paweł Kafarski,et al. BIOLOGICAL ACTIVITY OF AMINOPHOSPHONIC ACIDS , 1991 .
[35] H. Sztajer,et al. Antibacterial activity of phosphono dipeptides related to alafosfalin. , 1986, Journal of medicinal chemistry.
[36] I. Hoppe,et al. Asymmetric synthesis of α‐aminophosphonic acids, I enantioselective synthesis of L‐(1‐aminoethyl)phosphonic acid by asymmetric catalytic hydrogenation of N‐[1‐(dimethoxyphosphoryl)ethenyl]formamide , 1985 .