Subdivision Surfaces and Applications

After a short introduction on the fundamentals of subdivision surfaces, the more advanced material of this chapter focuses on two main aspects. First, shape interrogation issues are discussed; in particular, artifacts, typical of subdivision surfaces, are analysed. The second aspect is related to how structuring the geometric information: a multi-resolution approach is a natural choice for this geometric representation, and it can be seen as a possible way to structure geometry. Moreover, a first semantic structure can be given by a set of meaningful geometric constraints that the shape has to preserve, often due to the specific application context. How subdivision surfaces can cope with constraint-based modelling is treated in the chapter with a special attention to applications.

[1]  Charles T. Loop,et al.  Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.

[2]  Ahmad H. Nasri,et al.  Recursive subdivision of polygonal complexes and its applications in computer-aided geometric design , 2000, Comput. Aided Geom. Des..

[3]  Joe Warren,et al.  Subdivision: Functions as Fractals , 2002 .

[4]  Ulf Labsik,et al.  Interpolatory √3‐Subdivision , 2000 .

[5]  Charles T. Loop Bounded curvature triangle mesh subdivision with the convex hull property , 2002, The Visual Computer.

[6]  Hartmut Prautzsch,et al.  Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..

[7]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[8]  Ken Perlin,et al.  Procedural shape synthesis on subdivision surfaces , 2001, Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing.

[9]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[10]  Ahmad H. Nasri,et al.  Taxonomy of interpolation constraints on recursive subdivision surfaces , 2002, The Visual Computer.

[11]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[12]  Peter Schröder,et al.  A multiresolution framework for variational subdivision , 1998, TOGS.

[13]  Hans-Peter Seidel,et al.  Evolutions of Polygons in the Study of Subdivision Surfaces , 2003, Computing.

[14]  Neil A. Dodgson,et al.  On the support of recursive subdivision , 2004, ACM Trans. Graph..

[15]  Leif Kobbelt,et al.  Subdivision scheme tuning around extraordinary vertices , 2004, Comput. Aided Geom. Des..

[16]  Fausto Bernardini,et al.  Subdivision-Based Representations for Surface Styling and Design , 2003 .

[17]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[18]  Hong Qin,et al.  Dynamic Catmull-Clark Subdivision Surfaces , 1998, IEEE Trans. Vis. Comput. Graph..

[19]  I. Daubechies,et al.  Regularity of Irregular Subdivision , 1999 .

[20]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[21]  Pierre Alliez,et al.  Geometric Modeling Based on Polygonal Meshes , 2008, Eurographics.

[22]  J. Peters,et al.  Analysis of Algorithms Generalizing B-Spline Subdivision , 1998 .

[23]  Nira Dyn,et al.  Optimising 3D Triangulations: Improving the Initial Triangulation for the Butterfly Subdivision Scheme , 2005, Advances in Multiresolution for Geometric Modelling.

[24]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[25]  Peter Schröder,et al.  Trimming for subdivision surfaces , 2001, Comput. Aided Geom. Des..

[26]  Zhigeng Pan,et al.  Subdivision surface fitting from a dense triangle mesh , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.

[27]  Malcolm A. Sabin,et al.  Artifacts in recursive subdivision surfaces , 2003 .

[28]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[29]  Denis Zorin,et al.  Evaluation of piecewise smooth subdivision surfaces , 2002, The Visual Computer.

[30]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[31]  Peter Schröder,et al.  Fitting subdivision surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[32]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[33]  Ahmad H. Nasri,et al.  Taxonomy of interpolation constraints on recursive subdivision curves , 2002, The Visual Computer.

[34]  Neil A. Dodgson,et al.  Curvature behaviours at extraordinary points of subdivision surfaces , 2003, Comput. Aided Des..

[35]  Ahmad H. Nasri,et al.  Feature Curves with Cross Curvature Control on Catmull-Clark Subdivision Surfaces , 2006, Computer Graphics International.

[36]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[37]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[38]  Adi Levin,et al.  Interpolating nets of curves by smooth subdivision surfaces , 1999, SIGGRAPH.

[39]  Ahmad H. Nasri,et al.  Skinning Catmull-Clark subdivision surfaces with incompatible cross-sectional curves , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[40]  Neil A. Dodgson,et al.  √5-subdivision , 2005, Advances in Multiresolution for Geometric Modelling.

[41]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[42]  Nira Dyn Analysis of Convergence and Smoothness by the Formalism of Laurent Polynomials , 2002, Tutorials on Multiresolution in Geometric Modelling.

[43]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[44]  Henning Biermann,et al.  Sharp features on multiresolution subdivision surfaces , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[45]  Ahmad H. Nasri,et al.  Interpolating meshes of curves by Catmull-Clark subdivision surfaces with a shape parameter , 2005, Ninth International Conference on Computer Aided Design and Computer Graphics (CAD-CG'05).

[46]  Fausto Bernardini,et al.  Cut-and-paste editing of multiresolution surfaces , 2002, SIGGRAPH.

[47]  Charles T. Loop Smooth Ternary Subdivision of Triangle Meshes , 2002 .

[48]  Adi Levin Combined subdivision schemes for the design of surfaces satisfying boundary conditions , 1999, Comput. Aided Geom. Des..

[49]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[50]  A. A. Ball,et al.  Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.

[51]  Andrei Khodakovsky,et al.  Fine level feature editing for subdivision surfaces , 1999, SMA '99.

[52]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[53]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[54]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[55]  George Turkiyyah,et al.  Second‐order accurate constraint formulation for subdivision finite element simulation of thin shells , 2004 .

[56]  Chiara Eva Catalano Introducing design intent in discrete surface modelling , 2005, Int. J. Comput. Appl. Technol..

[57]  Ahmad H. Nasri Constructing polygonal complexes with shape handles for curve interpolation by subdivision surfaces , 2001, Comput. Aided Des..

[58]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[59]  Nira Dyn,et al.  Geometrically Controlled 4-Point Interpolatory Schemes , 2005, Advances in Multiresolution for Geometric Modelling.

[60]  Ulrich Reif,et al.  Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..

[61]  J. Warren,et al.  Subdivision methods for geometric design , 1995 .

[62]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[63]  Tao Ju,et al.  A geometric database for gene expression data , 2003, Symposium on Geometry Processing.

[64]  Peter Schröder,et al.  Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..

[65]  Faramarz F. Samavati,et al.  Incremental Catmull-Clark subdivision , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[66]  Scott Schaefer,et al.  Lofting curve networks using subdivision surfaces , 2004, SGP '04.

[67]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[68]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[69]  Ahmad H. Nasri,et al.  Polyhedral subdivision methods for free-form surfaces , 1987, TOGS.

[70]  Gershon Elber,et al.  Multiresolution Analysis , 2022 .

[71]  Ahmad H. Nasri,et al.  Interpolating an Unlimited Number of Curves Meeting at Extraordinary Points on Subdivision Surfaces * , 2003, Comput. Graph. Forum.