Subdivision Surfaces and Applications
暂无分享,去创建一个
Ioannis P. Ivrissimtzis | Ahmad H. Nasri | Chiara Eva Catalano | I. Ivrissimtzis | C. Catalano | A. Nasri
[1] Charles T. Loop,et al. Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.
[2] Ahmad H. Nasri,et al. Recursive subdivision of polygonal complexes and its applications in computer-aided geometric design , 2000, Comput. Aided Geom. Des..
[3] Joe Warren,et al. Subdivision: Functions as Fractals , 2002 .
[4] Ulf Labsik,et al. Interpolatory √3‐Subdivision , 2000 .
[5] Charles T. Loop. Bounded curvature triangle mesh subdivision with the convex hull property , 2002, The Visual Computer.
[6] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[7] Tony DeRose,et al. Subdivision surfaces in character animation , 1998, SIGGRAPH.
[8] Ken Perlin,et al. Procedural shape synthesis on subdivision surfaces , 2001, Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing.
[9] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[10] Ahmad H. Nasri,et al. Taxonomy of interpolation constraints on recursive subdivision surfaces , 2002, The Visual Computer.
[11] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[12] Peter Schröder,et al. A multiresolution framework for variational subdivision , 1998, TOGS.
[13] Hans-Peter Seidel,et al. Evolutions of Polygons in the Study of Subdivision Surfaces , 2003, Computing.
[14] Neil A. Dodgson,et al. On the support of recursive subdivision , 2004, ACM Trans. Graph..
[15] Leif Kobbelt,et al. Subdivision scheme tuning around extraordinary vertices , 2004, Comput. Aided Geom. Des..
[16] Fausto Bernardini,et al. Subdivision-Based Representations for Surface Styling and Design , 2003 .
[17] Taku Komura,et al. Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.
[18] Hong Qin,et al. Dynamic Catmull-Clark Subdivision Surfaces , 1998, IEEE Trans. Vis. Comput. Graph..
[19] I. Daubechies,et al. Regularity of Irregular Subdivision , 1999 .
[20] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[21] Pierre Alliez,et al. Geometric Modeling Based on Polygonal Meshes , 2008, Eurographics.
[22] J. Peters,et al. Analysis of Algorithms Generalizing B-Spline Subdivision , 1998 .
[23] Nira Dyn,et al. Optimising 3D Triangulations: Improving the Initial Triangulation for the Butterfly Subdivision Scheme , 2005, Advances in Multiresolution for Geometric Modelling.
[24] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[25] Peter Schröder,et al. Trimming for subdivision surfaces , 2001, Comput. Aided Geom. Des..
[26] Zhigeng Pan,et al. Subdivision surface fitting from a dense triangle mesh , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.
[27] Malcolm A. Sabin,et al. Artifacts in recursive subdivision surfaces , 2003 .
[28] Tony DeRose,et al. Piecewise smooth surface reconstruction , 1994, SIGGRAPH.
[29] Denis Zorin,et al. Evaluation of piecewise smooth subdivision surfaces , 2002, The Visual Computer.
[30] Henning Biermann,et al. Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.
[31] Peter Schröder,et al. Fitting subdivision surfaces , 2001, Proceedings Visualization, 2001. VIS '01..
[32] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[33] Ahmad H. Nasri,et al. Taxonomy of interpolation constraints on recursive subdivision curves , 2002, The Visual Computer.
[34] Neil A. Dodgson,et al. Curvature behaviours at extraordinary points of subdivision surfaces , 2003, Comput. Aided Des..
[35] Ahmad H. Nasri,et al. Feature Curves with Cross Curvature Control on Catmull-Clark Subdivision Surfaces , 2006, Computer Graphics International.
[36] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[37] Hugues Hoppe,et al. Displaced subdivision surfaces , 2000, SIGGRAPH.
[38] Adi Levin,et al. Interpolating nets of curves by smooth subdivision surfaces , 1999, SIGGRAPH.
[39] Ahmad H. Nasri,et al. Skinning Catmull-Clark subdivision surfaces with incompatible cross-sectional curves , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..
[40] Neil A. Dodgson,et al. √5-subdivision , 2005, Advances in Multiresolution for Geometric Modelling.
[41] Malcolm A. Sabin,et al. Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.
[42] Nira Dyn. Analysis of Convergence and Smoothness by the Formalism of Laurent Polynomials , 2002, Tutorials on Multiresolution in Geometric Modelling.
[43] Josef Hoschek,et al. Handbook of Computer Aided Geometric Design , 2002 .
[44] Henning Biermann,et al. Sharp features on multiresolution subdivision surfaces , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.
[45] Ahmad H. Nasri,et al. Interpolating meshes of curves by Catmull-Clark subdivision surfaces with a shape parameter , 2005, Ninth International Conference on Computer Aided Design and Computer Graphics (CAD-CG'05).
[46] Fausto Bernardini,et al. Cut-and-paste editing of multiresolution surfaces , 2002, SIGGRAPH.
[47] Charles T. Loop. Smooth Ternary Subdivision of Triangle Meshes , 2002 .
[48] Adi Levin. Combined subdivision schemes for the design of surfaces satisfying boundary conditions , 1999, Comput. Aided Geom. Des..
[49] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[50] A. A. Ball,et al. Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.
[51] Andrei Khodakovsky,et al. Fine level feature editing for subdivision surfaces , 1999, SMA '99.
[52] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[53] Jörg Peters,et al. The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.
[54] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[55] George Turkiyyah,et al. Second‐order accurate constraint formulation for subdivision finite element simulation of thin shells , 2004 .
[56] Chiara Eva Catalano. Introducing design intent in discrete surface modelling , 2005, Int. J. Comput. Appl. Technol..
[57] Ahmad H. Nasri. Constructing polygonal complexes with shape handles for curve interpolation by subdivision surfaces , 2001, Comput. Aided Des..
[58] Leif Kobbelt,et al. √3-subdivision , 2000, SIGGRAPH.
[59] Nira Dyn,et al. Geometrically Controlled 4-Point Interpolatory Schemes , 2005, Advances in Multiresolution for Geometric Modelling.
[60] Ulrich Reif,et al. Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..
[61] J. Warren,et al. Subdivision methods for geometric design , 1995 .
[62] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[63] Tao Ju,et al. A geometric database for gene expression data , 2003, Symposium on Geometry Processing.
[64] Peter Schröder,et al. Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..
[65] Faramarz F. Samavati,et al. Incremental Catmull-Clark subdivision , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).
[66] Scott Schaefer,et al. Lofting curve networks using subdivision surfaces , 2004, SGP '04.
[67] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[68] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[69] Ahmad H. Nasri,et al. Polyhedral subdivision methods for free-form surfaces , 1987, TOGS.
[70] Gershon Elber,et al. Multiresolution Analysis , 2022 .
[71] Ahmad H. Nasri,et al. Interpolating an Unlimited Number of Curves Meeting at Extraordinary Points on Subdivision Surfaces * , 2003, Comput. Graph. Forum.