Deep saltwater in Chalk of North-West Europe: origin, interface characteristics and development over geological time

High-concentration saltwaters occur in many places in the regional Chalk aquifers of North-West Europe; to investigate deep occurrences, profiles of interstitial porewater chemistry have been studied from three 250–450m deep cores drilled in the eastern parts of Zealand, Denmark. At the studied location, saline water in the Chalk resides at depths from 40 to 80m and salinity increases with depth. Concentrations of chloride up to ca. 30,000ppm have been observed at depths of 400m. Measured vertical hydraulic heads in open boreholes suggest that advective groundwater flow is now restricted in deeper parts of the Chalk formation and diffusive transport is thus the predominant transport mechanism. Laboratory-measured porosity and effective diffusion coefficients were used as input to a numerical 1D diffusion model of the interface between freshwater in an upper, fractured aquifer and modified connate formation water below. The model satisfactorily simulated the observed chloride and δ18O profiles. The diffusive refreshening of the Chalk formation has been going on for about 0.9 million years. The connate water in the Chalk of parts of the sedimentary basin seems to have been modified by transport of saltwater from underlying Mesozoic and Paleozoic sediments during compaction, which presumably ceased around 4 million years ago.RésuméDes eaux à forte salinité ont été observées à divers endroits de l’aquifère régional de la craie au nord-ouest de l’Europe ; afin d’étudier ces niveaux profonds, la chimie de l’eau interstitielle le long de profils a été étudiée à partir de 3 carottes de 250 à 450 mètres de profondeurs localisées dans la partie est de Seeland au Danemark. Sur le site d’étude, les eaux riches en sels se trouvent dans la craie à une profondeur comprise entre 40 et 80 m et la salinité augmente avec la profondeur. Des concentrations en chlorures allant jusqu’à environ 30,000 ppm ont été mesurées à des profondeurs de 400 m. Les hauteurs hydrauliques verticales mesurées dans les forages suggèrent qu’un flux advectif des eaux souterraines ne se retrouve maintenant que dans les parties les plus profondes de l’aquifère de la craie alors que le transport diffusif domine partout ailleurs. La porosité mesurée en laboratoire et les coefficients de diffusion réels ont été utilisés comme entrée du modèle numérique 1D de diffusion de l’interface entre un aquifère d’eau douce en surface et un aquifère fracturé et des eaux connées en dessous. Le modèle simule de manière satisfaisante les chlorures observés et les profils de δ18O. La dilution diffusive des formations de la craie se fait depuis environ 0.9 million d’années. Les eaux connées de la craie dans une partie du bassin sédimentaire semblent avoir été modifiées par transport d’eau salée depuis les couches de sédiments formés au Mésozoïque et Paléozoïque durant la compaction qui probablement a cessé il y a environ 4 million d’années.ResumenSe han estudiado perfiles químicos del agua intersticial de poros a partir de tres testigos de perforaciones de una profundidad de 250 – 450 m perforados en las regiones orientales de Zealand en Dinamarca para investigar la existencia en profundidad de aguas saladas de altas concentraciones que se presentan en muchos lugares en acuíferos regionales del Chalk en el Noroeste europeo. En el sitio estudiado, el agua salina en el Chalk reside a profundidades de 40 a 80 m y la salinidad se incrementa con la profundidad. Se han observado concentraciones de cloruro de hasta aproximadamente 30,000 ppm en profundidades de 400 m. Las cargas hidráulicas verticales medidas en las perforaciones abiertas sugieren que el flujo advectivo de las aguas subterráneas está actualmente restringido en las partes más profundas de la formación del Chalk y el transporte difusivo es así el mecanismo predominante de transporte. Se utilizaron la porosidad medida en laboratorio y los coeficientes de difusión efectiva como entrada a un modelo numérico de difusión 1D de la interfase entre el agua dulce en el acuífero superior fracturado y una formación inferior de agua connata modificada. El modelo simuló satisfactoriamente los perfiles observados de cloruro y δ18O observados. La renovación difusiva de la formación del Chalk se ha venido produciendo durante aproximadamente 0.9 millones de años. El agua connata en el Chalk de parte de la cuenca sedimentaria parece haber sido modificada por transporte de agua salada desde los sedimentos Mesozoicos y Paleozoicos subyacentes durante la compactación, la cual que presumiblemente cesó hace alrededor de 4 millones de años.摘要欧洲西北部白垩系含水层广泛分布高浓度盐水。为调查其深部分布, 根据丹麦西兰岛东部3个深度在250-450m之间的钻孔岩芯研究了剖面上的孔隙水化学。在研究区内, 白垩含水层的盐水分布深度在40-80m, 其盐度随深度增高。在400m深度观测到氯浓度可达约30, 000 ppm。测得的开放钻孔垂向水头表明, 目前地下水平流局限在白垩系深部, 故扩撒运移是主要运移机制。将室内测定的孔隙度和有效扩散系数作为1维数值扩散界面模型的输入参数, 其界面位于上部裂隙含水层的淡水和下部改变了的原生水之间。该模型很好地模拟了观测到的氯和氧-18剖面。白垩系地层盐水的扩散更新已持续约90万年。部分沉积盆地白垩系中的原生水似受到源于其下伏的中生代和古生代沉积物的压实过程中盐水运移的影响。这种作用大约在4百万年前停止。ResumoÁguas salinas de elevadas concentrações aparecem em muitos locais nos aquíferos regionais Chalk (calcáreo puro) do Noroeste da Europa; para investigar ocorrências profundas, estudaram-se perfis de química da água intersticial de três sondagens de 250–450 m de profundidade na parte leste da Zelândia, Dinamarca. No local estudado, a água salina no Chalk reside a profundidades entre os 40 e os 80 m e a salinidade aumenta com a profundidade. Observaram-se concentrações de cloretos até cerca de 30,000 ppm a profundidades de 400 m. Os potenciais hidráulicos verticais medidos em furos sem revestimento sugerem que, neste momento, o fluxo advectivo da água subterrânea em partes mais profundas da formação Chalk é restrito, e que o transporte difusivo é, portanto, o mecanismo de transporte predominante. Utilizaram-se os coeficientes de porosidade e de difusão efectiva, medidos em laboratório, para entrada num modelo numérico de difusão 1D da interface entre água doce, num aquífero superior fracturado, e água fóssil modificada subjacente. O modelo simulou, de modo satisfatório, os perfis de cloretos e δ18O observados. A renovação difusiva da salinidade na formação Chalk tem estado a decorrer durante os últimos 0.9 milhões de anos. Em partes da bacia sedimentar, a água fóssil no Chalk parece ter sido modificada pelo transporte de águas salgadas provenientes de sedimentos Mesozóicos e Paleozóicos subjacentes, durante a sua compactação, um processo que presumivelmente terá cessado há cerca de 4 milhões de anos.

[1]  I. Clark,et al.  Environmental Isotopes in Hydrogeology , 1997 .

[2]  P. A. Ziegler,et al.  Geological atlas of Western and Central Europe , 1969 .

[3]  J. Fontes,et al.  Geochemistry and origin of formation brines from the Paris Basin, France , 1993 .

[4]  P. Jakobsen,et al.  Infrared Thermography and Fracture Analysis of Preferential Flow in Chalk , 2005 .

[5]  S. Flögel,et al.  Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life , 2006 .

[6]  E. Barron,et al.  Cretaceous rhythmic bedding sequences: a plausible link between orbital variations and climate , 1985 .

[7]  C. Appelo,et al.  Geochemistry, groundwater and pollution , 1993 .

[8]  P. Frykman Spatial variability in petrophysical properties in Upper Maastrichtian chalk outcrops at Stevns Klint, Denmark , 2001 .

[9]  E. Rasmussen,et al.  Comment on: ``Cenozoic evolution of the eastern Danish North Sea'' by M. Huuse, H. Lykke-Andersen and O. Michelsen, [Marine Geology 177, 243-269] , 2002 .

[10]  P. Ashton,et al.  The tectonic evolution of the Fennoscandian Border Zone in Denmark , 1987 .

[11]  A. Parker,et al.  Isotopic and noble gas study of Chalk groundwater in the London Basin, England , 1997 .

[12]  E. Rasmussen,et al.  Mesozoic–Cenozoic exhumation events in the eastern North Sea Basin: a multi‐disciplinary study based on palaeothermal, palaeoburial, stratigraphic and seismic data , 2007 .

[13]  J. Grotzinger,et al.  Did major changes in the stable-isotope composition of Proterozoic seawater occur? , 1990 .

[14]  P. Japsen,et al.  Neogene uplift and erosion of southern Scandinavia induced by the rise of the South Swedish Dome , 2002, Geological Society, London, Special Publications.

[15]  Martin W. Johnson,et al.  The oceans : their physics, chemistry, and general biology , 1943 .

[16]  S. J. Fritz,et al.  Electrolyte-induced solute permeability effects in compacted smectite membranes , 1994 .

[17]  F. Phillips,et al.  Isotopic fractionation during ion filtration; I, Theory , 1987 .

[18]  R. Nativ The brine underlying the Oak Ridge Reservation, Tennessee, USA: Characterization, genesis, and environmental implications , 1996 .

[19]  F. J. Pearson,et al.  The age of groundwater in the chalk of the London Basin , 1976 .

[20]  W. Scott Keys,et al.  A Practical Guide to Borehole Geophysics in Environmental Investigations , 1997 .

[21]  J. Marshall,et al.  Isotopic variation in rhythmically bedded chalks: Paleotemperature variation in the Upper Cretaceous , 1989 .

[22]  F. A. Berry,et al.  Simultaneous flow of water and solutes through geological membranes—I. Experimental investigation , 1973 .

[23]  A. J. Easteal,et al.  Isotope effects in water. Tracer diffusion coefficients for water(oxygen-18) (H218O) in ordinary water , 1984 .

[24]  M. Erlström,et al.  Chalk depth structure maps, Central to Eastern North Sea, Denmark , 2007 .

[25]  Jasmine B. D. Jaffrés,et al.  The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years , 2007 .

[26]  D. Kinniburgh,et al.  A rapid method for determining apparent diffusion coefficients in Chalk and other consolidated porous media , 2007 .

[27]  A. Butler,et al.  Characterising the vertical variations in hydraulic conductivity within the Chalk aquifer , 2006 .

[28]  P. Younger,et al.  Water quality impacts and palaeohydrogeology in the Yorkshire Chalk aquifer, UK , 2001, Quarterly Journal of Engineering Geology and Hydrogeology.

[29]  D. Kinniburgh,et al.  Baseline geochemical conditions in the Chalk aquifer, Berkshire, U.K.: a basis for groundwater quality management , 1987 .

[30]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[31]  S. Epstein,et al.  Variation of O18 content of waters from natural sources , 1953 .

[32]  S. Foster,et al.  The Chalk aquifer - its vulnerability to pollution. , 1993 .

[33]  M. Stage Recognition of cyclicity in the petrophysical properties of a Maastrichtian pelagic chalk oil field reservoir from the Danish North Sea , 2001 .

[34]  T. Coplen,et al.  Reporting of stable hydrogen, carbon, and oxygen isotopic abundances , 1995 .

[35]  M. Stage Magnetic susceptibility as carrier of a climatic signal in chalk , 2001 .

[36]  G. Pedersen,et al.  Thin, fine-grained storm layers in a muddy shelf sequence: an example from the Lower Jurassic in the Stenlille 1 well, Denmark , 1985, Journal of the Geological Society.

[37]  F. Paillet Borehole flowmeter applications in irregular and large-diameter boreholes , 2004 .

[38]  Tyler B. Coplen,et al.  NEW GUIDELINES FOR REPORTING STABLE HYDROGEN, CARBON, AND OXYGEN ISOTOPE-RATIO DATA , 1996 .

[39]  F. Surlyk,et al.  Contourite drifts, moats and channels in the Upper Cretaceous chalk of the Danish Basin , 2007 .

[40]  K. Różański Deuterium and oxygen-18 in European groundwaters — Links to atmospheric circulation in the past , 1985 .

[41]  R. Mortimore,et al.  Correlation of the Upper Cretaceous White Chalk (Turonian to Campanian) in the Anglo-Paris Basin , 1987 .

[42]  K. Labus Origin of groundwater mineralization in coarse-grained lower Badenian aquifer in the Czech part of the Upper Silesian Coal Basin , 2010 .

[43]  Gordon Rittenhouse Bromine in Oil-Field Waters and Its Use in Determining Possibilities of Origin of These Waters , 1967 .

[44]  P. Aagaard,et al.  Origin and evolution of formation waters from oil fields on the Norwegian shelf , 1989 .

[45]  H. Weingärtner Self Diffusion in Liquid Water. A Reassessment , 1982 .

[46]  L. Stemmerik,et al.  Early diagenetic celestite replacement of demosponges in Upper Cretaceous (Campanian–Maastrichtian) chalk, Stevns, Denmark , 2009 .

[47]  T. Coplen,et al.  Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths. , 1973 .

[48]  H. Craig Isotopic Variations in Meteoric Waters , 1961, Science.

[49]  F. Bazer-Bachi,et al.  Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones (Meuse/Haute–Marne, France) , 2008 .

[50]  J. Hancock The petrology of the Chalk , 1975 .

[51]  B. Reichert,et al.  Contaminant Transport in Fractured Chalk: Laboratory and Field Experiments , 2003, Ground water.

[52]  H. Strauss,et al.  Oxygen isotope evolution of Phanerozoic seawater , 1997 .

[53]  J. Dickson Fossil Echinoderms As Monitor of the Mg/Ca Ratio of Phanerozoic Oceans , 2002, Science.

[54]  T. Coplen,et al.  Ultrafiltration by a compacted clay membrane—II. Sodium ion exclusion at various ionic strengths☆☆☆ , 1973 .

[55]  Rosanna M. Saindon,et al.  Hyperfiltration of Nacl Solutions Using a Simulated Clay/Sand Mixture at Low Compaction Pressures , 2005 .

[56]  J. Gunn,et al.  The Hydrogeology of the Chalk of North-West Europe , 1995 .

[57]  D. Conley,et al.  Characteristics of Danish estuaries , 2000 .

[58]  A. Bath,et al.  Identification of connate water in interstitial solution of chalk sediment , 1981 .

[59]  S. Sheppard Characterization and isotopic variations in natural waters , 1986 .

[60]  A. Bath,et al.  Centrifuge extraction and chemical analysis of interstitial waters , 1976 .

[61]  R. Bromley,et al.  Maastrichtian Chalk of North‐West Europe—a Pelagic Shelf Sediment , 2009 .

[62]  M. Morgan-Jones Mineralogy of the non-carbonate material from the Chalk of Berkshire and Oxfordshire, England , 1977, Clay minerals.

[63]  F. Surlyk A Cool-Water Carbonate Ramp With Bryozoan Mounds: Late Cretaceous-Danian of the Danish Basin , 1997 .

[64]  M. Huuse,et al.  Cenozoic evolution of the eastern Danish North Sea , 2001 .

[65]  P. Grathwohl,et al.  Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. , 2001, Journal of contaminant hydrology.

[66]  J. Bloomfield Characterisation of hydrogeologically significant fracture distributions in the Chalk: an example from the Upper Chalk of southern England , 1996 .

[67]  M. Huuse,et al.  Reply to comment of P. Japsen et al. on “Cenozoic evolution of the eastern Danish North Sea” , 2002 .

[68]  K. Hiscock,et al.  Hydrochemical and stable isotope evidence for the extent and nature of the effective Chalk aquifer of north Norfolk, UK , 1996 .

[69]  S. Thornton,et al.  Determination of interstitial water chemistry and porosity in consolidated aquifer materials by diffusion equilibrium-exchange. , 2005, Environmental science & technology.

[70]  N. Harris,et al.  Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites , 2006 .

[71]  E. Lavernia,et al.  An experimental investigation , 1992, Metallurgical and Materials Transactions A.

[72]  C. Kreitler Hydrogeology of sedimentary basins , 1989 .

[73]  F. Surlyk,et al.  The Cretaceous–Palaeogene boundary at Stevns Klint, Denmark: inversion tectonics or sea-floor topography? , 2004, Journal of the Geological Society.

[74]  J. McIntosh,et al.  Are secular variations in seawater chemistry reflected in the compositions of basinal brines , 2006 .

[75]  W. Kloppmann,et al.  Residence time of Chalk groundwaters in the Paris Basin and the North German Basin: a geochemical approach , 1998 .

[76]  R. Wallach,et al.  Matrix diffusion in northern Negev fractured chalk and its correlation to porosity , 2002 .

[77]  L. Stemmerik,et al.  Shallow core drilling of the Upper Cretaceous Chalk at Stevns Klint, Denmark , 2006 .

[78]  Alfred E. Hess,et al.  Identifying hydraulically conductive fractures with a slow-velocity borehole flowmeter , 1986 .

[79]  K. Magara Water Expulsion from Clastic Sediments during Compaction--Directions and Volumes , 1976 .

[80]  D. Hill Diffusion coefficients of nitrate, chloride, sulphate and water in cracked and uncracked Chalk , 1984 .

[81]  J. Fontes,et al.  Origin of the oil-field brines in the Paris basin , 1990 .

[82]  David G. Kinniburgh,et al.  Extraction and chemical analysis of interstitial water from soils and rocks , 1983 .

[83]  J. Hanor Origin of saline fluids in sedimentary basins , 1994, Geological Society, London, Special Publications.

[84]  J. Horita,et al.  Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites , 2002 .

[85]  Tyler B. Coplen,et al.  Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (Technical Report) , 1994 .