Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime

Abstract. A porous-core octagonal photonic crystal fiber (PC-OPCF) with ultralow effective material loss (EML), high core power fraction, and ultra flattened dispersion is proposed for terahertz (THz) wave propagation. At an operating frequency of 1 THz and core diameter of 345  μm, simulation results display an extremely low EML of 0.047  cm−1, 49.1% power transmission through core air holes, decreased confinement loss with the increase of frequency, and dispersion variation of 0.15  ps/THz/cm. In addition, the proposed PCF can successfully operate in single-mode condition. All the simulations are performed with finite-element modeling package, COMSOL v4.2. The design can be fabricated using a stacking and drilling method. Thus, the proposed fiber has the potential of being an effective transmission medium of broadband THz waves.

[1]  R. Kersting,et al.  Terahertz imaging with nanometer resolution , 2003 .

[2]  D. Mittleman,et al.  Chemical recognition of gases and gas mixtures with terahertz waves. , 1996, Optics letters.

[3]  H. Latifi,et al.  Localized modes in a defectless photonic crystal waveguide at terahertz frequencies. , 2012, Optics letters.

[4]  Zhengbiao Ouyang,et al.  Porous-Core Photonic Crystal Fiber for Low Loss Terahertz Wave Guiding , 2013, IEEE Photonics Technology Letters.

[5]  Peter Uhd Jepsen,et al.  Bendable, low-loss Topas fibers for the terahertz frequency range. , 2009, Optics express.

[6]  Shubi Kaijage,et al.  Proposal for a low loss porous core octagonal photonic crystal fiber for T-ray wave guiding , 2014 .

[7]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[8]  Peter Uhd Jepsen,et al.  Fabrication and characterization of porous-core honeycomb bandgap THz fibers. , 2012, Optics express.

[9]  Ole Bang,et al.  Localized biosensing with Topas microstructured polymer optical fiber , 2007 .

[10]  Ci-Ling Pan,et al.  Terahertz air-core microstructure fiber , 2008 .

[11]  Oleg Mitrofanov,et al.  Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation. , 2007, Optics letters.

[12]  Wai Lam Chan,et al.  Imaging with terahertz radiation , 2007 .

[13]  Maya R. Gupta,et al.  Recent advances in terahertz imaging , 1999 .

[14]  P. Planken,et al.  Terahertz dielectric properties of polystyrene foam , 2002 .

[15]  Chongjin Xie,et al.  Data encoding on terahertz signals for communication and sensing. , 2008, Optics letters.

[16]  R. Bise,et al.  Solgel-Derived Microstructured Fibers: Fabrication and Characterization , 2005 .

[17]  Raonaqul Islam,et al.  Dispersion flattened, low-loss porous fiber for single-mode terahertz wave guidance , 2015 .

[18]  S. S. A. Obayya,et al.  Modal Analysis of a Novel Soft Glass Photonic Crystal Fiber With Liquid Crystal Core , 2012, Journal of Lightwave Technology.

[19]  Ikuo Yokohama-shi Matsukura,et al.  An optical waveguide , 1999 .

[20]  Michael Nagel,et al.  Integrated THz technology for label-free genetic diagnostics , 2002 .

[21]  Peter Uhd Jepsen,et al.  Porous-core honeycomb bandgap THz fiber. , 2011, Optics letters.

[22]  Maksim Skorobogatiy,et al.  Ferroelectric all-polymer hollow bragg fibers for terahertz guidance , 2007 .

[23]  Raonaqul Islam,et al.  Low-loss rotated porous core hexagonal single-mode fiber in THz regime , 2015 .

[24]  S. M. Abdur Razzak,et al.  Design of hybrid photonic crystal fiber: Polarization and dispersion properties , 2014 .

[25]  Changhe Zhou,et al.  Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation , 2013 .

[26]  Changxi Yang,et al.  Polarization splitter based on photonic crystal fibers. , 2003, Optics express.

[27]  Derek Abbott,et al.  Porous fibers: a novel approach to low loss THz waveguides. , 2008, Optics express.

[28]  Bora Ung,et al.  Polymer microstructured optical fibers for terahertz wave guiding. , 2011, Optics express.

[29]  Yoshinori Namihira,et al.  Numerical Investigation of Octagonal Photonic Crystal Fibers with Strong Confinement Field , 2006, IEICE Trans. Electron..

[30]  S. M. Abdur Razzak,et al.  Ultra-Low Material Loss and Dispersion Flattened Fiber for THz Transmission , 2014, IEEE Photonics Technology Letters.

[31]  Jiangquan Zhang,et al.  Waveguide terahertz time-domain spectroscopy of nanometer water layers. , 2004, Optics letters.

[32]  Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber , 2014 .

[33]  Markus Walther,et al.  Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance. , 2011, Optics express.

[34]  Internal stress measurement by laser feedback method. , 2012, Optics letters.

[35]  Jian Liang,et al.  High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance. , 2013, Applied optics.