A complete characterization for k-resonant Klein-bottle polyhexes

A hexagonal tessellation K(p, q, t) on Klein bottle, a non-orientable surface with cross-cap number 2, is a finite-sized elemental benzenoid which can be produced from a p  ×  q-parallelogram of hexagonal lattice with usual identifications of sides and with torsion t. Unlike torus, Klein bottle polyhex K(p, q, t) is not transitive except for some degenerated cases. We shall show, however, that K(p, q, t) does not depend on t. Accordingly, criteria for K(p, q, t) to be k-resonant for every positive integer k will be given. Moreover, we shall show that K(3, q, t) of 3-resonance are fully-benzenoid.

[1]  E. Clar The aromatic sextet , 1972 .

[2]  Amos Altshuler,et al.  Construction and enumeration of regular maps on the torus , 1973, Discret. Math..

[3]  M. Randic Conjugated circuits and resonance energies of benzenoid hydrocarbons , 1976 .

[4]  M. Randic Aromaticity and conjugation , 1977 .

[5]  Seiya Negami,et al.  Uniqueness and faithfulness of embedding of toroidal graphs , 1983, Discret. Math..

[6]  Douglas J. Klein,et al.  Elemental carbon cages , 1988 .

[7]  Maolin Zheng,et al.  The K-resonant benzenoid systems , 1991 .

[8]  Carsten Thomassen,et al.  Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface , 1991 .

[9]  Fuji Zhang,et al.  When each hexagon of a hexagonal system covers it , 1991, Discret. Appl. Math..

[10]  Maolin Zheng,et al.  Construction of 3-resonant benzenoid systems , 1992 .

[11]  Rong-si Chen,et al.  k-coverable coronoid systems , 1993 .

[12]  Rong-si Chen,et al.  K-coverable polyhex graphs , 1996, Ars Comb..

[13]  Douglas J. Klein,et al.  Resonance in Elemental Benzenoids , 1996, Discret. Appl. Math..

[14]  Heping Zhang,et al.  The Clar Covering Polynomial of Hexagonal Systems I , 1996, Discret. Appl. Math..

[15]  Edward C. Kirby,et al.  How To Enumerate the Connectional Isomers of a Toroidal Polyhex Fullerene , 1998, J. Chem. Inf. Comput. Sci..

[16]  Peter E. John,et al.  Kekulé Count in Toroidal Hexagonal Carbon Cages , 1998 .

[17]  Gordon G. Cash A Simple Means of Computing the Kekulé Structure Count for Toroidal Polyhex Fullerenes , 1998, J. Chem. Inf. Comput. Sci..

[18]  Patrick W. Fowler,et al.  Fullerenes as Tilings of Surfaces , 2000, J. Chem. Inf. Comput. Sci..

[19]  Patrick W. Fowler,et al.  Pentaheptite Modifications of the Graphite Sheet , 2000, J. Chem. Inf. Comput. Sci..

[20]  D. Maru,et al.  Symmetries of Hexagonal Molecular Graphs on the Torus , 2000 .

[21]  Heping Zhang,et al.  Plane elementary bipartite graphs , 2000, Discret. Appl. Math..

[22]  Fuji Zhang,et al.  k-Resonant Benzenoid Systems and k-Cycle Resonant Graphs , 2001, J. Chem. Inf. Comput. Sci..

[23]  E. C. Kirby Recent Work on Toroidal and Other Exotic Fullerene Structures , 2002 .

[24]  M. Randic Aromaticity of polycyclic conjugated hydrocarbons. , 2003, Chemical reviews.

[25]  H. Sachs,et al.  A Theorem for Counting Spanning Trees in General Chemical Graphs and Its Particular Application to Toroidal Fullerenes , 2004 .

[26]  Lusheng Wang,et al.  k-Resonance of Open-Ended Carbon Nanotubes , 2004 .

[27]  Dragan Marusic,et al.  Chirality of Toroidal Molecular Graphs , 2005, J. Chem. Inf. Model..

[28]  P. Lam,et al.  k-resonance in Toroidal Polyhexes* , 2005 .