Long-Term Potentiation in Two Synaptic Systems of the Hippocampal Brain Slice

[1]  M. Mayer,et al.  The physiology of excitatory amino acids in the vertebrate central nervous system , 1987, Progress in Neurobiology.

[2]  Jeffrey S. Taube,et al.  Intracellular recording from hippocampal CA1 interneurons before and after development of long-term potentiation , 1987, Brain Research.

[3]  M. Mayer,et al.  Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons , 1987, Nature.

[4]  R K Wong,et al.  Inhibitory control of local excitatory circuits in the guinea‐pig hippocampus. , 1987, The Journal of physiology.

[5]  G. Collingridge,et al.  Characterization of an N-methyl-d-aspartate receptor component of synaptic transmission in rat hippocampal slices , 1987, Neuroscience.

[6]  H. Miyakawa,et al.  Requirement of extracellular Ca2+ after tetanus for induction of long-term potentiation in guinea pig hippocampal slices , 1987, Neuroscience Letters.

[7]  C. Koch,et al.  The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. , 1987, Science.

[8]  S. Cull-Candy,et al.  Patch-clamp recording from single glutamate-receptor channels , 1987 .

[9]  D. Choi,et al.  Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. , 1987, Science.

[10]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  C. Stevens,et al.  Glutamate activates multiple single channel conductances in hippocampal neurons , 1987, Nature.

[12]  S. Cull-Candy,et al.  Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons , 1987, Nature.

[13]  P. Ascher,et al.  Glycine potentiates the NMDA response in cultured mouse brain neurons , 1987, Nature.

[14]  T. Bliss,et al.  Long-term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by d(−)aminophosphonovalerate , 1987, Neuroscience.

[15]  R. Dingledine NMDA Receptors: what do they do? , 1986, Trends in Neurosciences.

[16]  R. Dingledine,et al.  Involvement of N‐methyl‐D‐aspartate receptors in epileptiform bursting in the rat hippocampal slice. , 1986, The Journal of physiology.

[17]  C. Cotman,et al.  Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl d-aspartate antagonists , 1986, Neuroscience Letters.

[18]  A. Ganong,et al.  Action of 3-((±)-2-car☐ypiperazin-4-yl)-propyl-1-phosphonic aci (CPP): a new and highly potent antagonist of N-methyl-d-aspartate receptors in the hippocampus , 1986, Brain Research.

[19]  G. Collingridge,et al.  Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism , 1986, Nature.

[20]  S. Kelso,et al.  Hebbian synapses in hippocampus. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[21]  B. Gustafsson,et al.  Hippocampal long-lasting potentiation produced by pairing single volleys and brief conditioning tetani evoked in separate afferents , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  D. Amaral,et al.  A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus , 1986, The Journal of comparative neurology.

[23]  S. Kelso,et al.  Differential conditioning of associative synaptic enhancement in hippocampal brain slices. , 1986, Science.

[24]  T. H. Brown,et al.  Voltage-clamp analysis of synaptic inhibition during long-term potentiation in hippocampus. , 1986, Journal of neurophysiology.

[25]  T. H. Brown,et al.  Conductance mechanism responsible for long-term potentiation in monosynaptic and isolated excitatory synaptic inputs to hippocampus. , 1986, Journal of neurophysiology.

[26]  C. Cotman,et al.  Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  D. A. Baxter,et al.  Quantal mechanism of long-term synaptic potentiation. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Mccaman,et al.  Long‐term potentiation of synaptic acetylcholine release in the superior cervical ganglion of the rat. , 1985, The Journal of physiology.

[29]  T. H. Brown,et al.  Neurophysiology and pharmacology of long‐term potentiation in the rat sympathetic ganglion. , 1985, The Journal of physiology.

[30]  F. Joó,et al.  Increased binding of calcium in the hippocampal slice during long-term potentiation , 1985, Neuroscience Letters.

[31]  H. C. Moises,et al.  Electrophysiological effects of dynorphin peptides on hippocampal pyramidal cells in rat. , 1985, European journal of pharmacology.

[32]  A. Ganong,et al.  Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors , 1984, Brain Research.

[33]  G. Lynch,et al.  The biochemistry of memory: a new and specific hypothesis. , 1984, Science.

[34]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[35]  G. A. Clark,et al.  Branch-specific heterosynaptic facilitation in Aplysia siphon sensory cells. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Timothy J. Teyler,et al.  Long-term potentiation as a candidate mnemonic device , 1984, Brain Research Reviews.

[37]  H. Wigström,et al.  A possible correlate of the postsynaptic condition for long-lasting potentiation in the guinea pig hippocampus in vitro , 1984, Neuroscience Letters.

[38]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[39]  F. Fonnum Glutamate: A Neurotransmitter in Mammalian Brain , 1984, Journal of neurochemistry.

[40]  T. H. Brown,et al.  Associative long-term potentiation in hippocampal slices. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Eccles Calcium in long-term potentiation as a model for memory , 1983, Neuroscience.

[42]  G. Lynch,et al.  Intracellular injections of EGTA block induction of hippocampal long-term potentiation , 1983, Nature.

[43]  G. Fagg,et al.  Amino acid neurotransmitters and their pathways in the mammalian central nervous system , 1983, Neuroscience.

[44]  T. H. Brown,et al.  Interpretation of voltage-clamp measurements in hippocampal neurons. , 1983, Journal of neurophysiology.

[45]  T. H. Brown,et al.  Voltage-clamp analysis of mossy fiber synaptic input to hippocampal neurons. , 1983, Journal of neurophysiology.

[46]  K. Lee Cooperativity among afferents for the induction of long-term potentiation in the CA1 region of the hippocampus , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[48]  W. Levy,et al.  Partial quantification of the associative synaptic learning rule of the dentate gyrus , 1983, Neuroscience.

[49]  E. Kandel,et al.  A cellular mechanism of classical conditioning in Aplysia: activity-dependent amplification of presynaptic facilitation. , 1983, Science.

[50]  J. Byrne,et al.  Associative conditioning of single sensory neurons suggests a cellular mechanism for learning. , 1983, Science.

[51]  F. Crick Do dendritic spines twitch? , 1982, Trends in Neurosciences.

[52]  N. Brecha,et al.  Localization of enkephalin‐like immunoreactivity to identified axonal and neuronal populations of the rat hippocampus , 1981, The Journal of comparative neurology.

[53]  Thomas H. Brown,et al.  Spontaneous miniature synaptic potentials in hippocampal neurons , 1979, Brain Research.

[54]  B. McNaughton,et al.  Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents , 1978, Brain Research.

[55]  G. Lynch,et al.  Synaptic transmission is required for initiation of long-term potentiation , 1978, Brain Research.

[56]  T. H. Brown,et al.  Evoked neurotransmitter release: statistical effects of nonuniformity and nonstationarity. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[57]  G. Stent A physiological mechanism for Hebb's postulate of learning. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Ganong,et al.  Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. , 1988, Annual review of neuroscience.

[59]  T. Teyler,et al.  Long-term potentiation. , 1987, Annual review of neuroscience.

[60]  Stephen J. Smith,et al.  NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones , 1986, Nature.

[61]  T. Carew,et al.  Invertebrate learning and memory: from behavior to molecules. , 1986, Annual review of neuroscience.

[62]  A. Ganong,et al.  Excitatory amino acid synaptic mechanisms and neurological function , 1986 .

[63]  F. Bloom,et al.  Dynorphin is contained within hippocampal mossy fibers: immunochemical alterations after kainic acid administration and colchicine-induced neurotoxicity. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[64]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.

[65]  R. H. Evans,et al.  Excitatory amino acid transmitters. , 1981, Annual review of pharmacology and toxicology.

[66]  D. Amaral,et al.  Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions , 1981, The Journal of comparative neurology.

[67]  P. Andersen,et al.  Calcium dependency of synaptic long-lasting potentiation in the hippocampal slice. , 1979, Acta physiologica Scandinavica.