A Markov random field model for mode detection in cluster analysis

A statistical clustering approach is proposed, based on Markov random field models. A discrete field derived from the raw data set is considered as a field of measures. A hidden field, computed using a new potential function, is used to detect the modes that correspond to domains of high local concentrations of observations. Results obtained on artificially generated and real data sets demonstrate the efficiency of this new approach for unsupervised pattern classification.

[1]  David B. Cooper,et al.  Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[3]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[4]  J. Buhmann,et al.  Pairwise Data Clustering , 1997 .

[5]  Guoqiang Peter Zhang,et al.  Neural networks for classification: a survey , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[6]  Jack-Gérard Postaire,et al.  Mode Detection by Relaxation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Jack-Gérard Postaire,et al.  Clustering by mode boundary detection , 1989, Pattern Recognit. Lett..

[8]  Jack-Gérard Postaire,et al.  An Approximate Solution to Normal Mixture Identification with Application to Unsupervised Pattern Classification , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  David G. Stork,et al.  Pattern Classification , 1973 .

[10]  Sridhar Lakshmanan,et al.  Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Joachim M. Buhmann,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  J. M. Cornuet,et al.  Etude biométrique de colonies d'abeilles d'Espagne et du Portugal , 1989 .

[13]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Joachim M. Buhmann,et al.  A theory of proximity based clustering: structure detection by optimization , 2000, Pattern Recognit..

[15]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[16]  Professor Dr. Friedrich Ruttner Biogeography and Taxonomy of Honeybees , 1987, Springer Berlin Heidelberg.

[17]  Jack-Gérard Postaire,et al.  Cluster Analysis by Binary Morphology , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Brian Everitt,et al.  Cluster analysis , 1974 .