A Graph Matching Based Approach to Fingerprint Classification Using Directional Variance

In the present paper we address the fingerprint classification problem with a structural pattern recognition approach. Our main contribution is the definition of modified directional variance in orientation vector fields. The new directional variance allows us to extract regions from fingerprints that are relevant for the classification in the Henry scheme. After processing the regions of interest, the resulting structures are converted into attributed graphs. The classification is finally performed with an efficient graph edit distance algorithm. The performance of the proposed classification method is evaluated on the NIST-4 database of fingerprints.

[1]  Anil K. Jain,et al.  Fingerprint classification , 1996, Pattern Recognit..

[2]  Alessandra Lumini,et al.  Inexact graph matching for fingerprint classification , 1999 .

[3]  Gian Luca Marcialis,et al.  Fusion of Statistical and Structural Fingerprint Classifiers , 2003, AVBPA.

[4]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Ruowei Zhou,et al.  A novel single-pass thinning algorithm and an effective set of performance criteria , 1995, Pattern Recognit. Lett..

[6]  Horst Bunke,et al.  A probabilistic approach to learning costs for graph edit distance , 2004, ICPR 2004.

[7]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[8]  Yuan Yao,et al.  Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines , 2003, Pattern Recognit..

[9]  Gian Luca Marcialis,et al.  An Experimental Comparison of Fingerprint Classification Methods Using Graphs , 2005, GbRPR.

[10]  Anil K. Jain,et al.  A Multichannel Approach to Fingerprint Classification , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Akio Tojo,et al.  Fingerprint pattern classification , 1984, Pattern Recognit..

[12]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.

[13]  Alessandra Lumini,et al.  Fingerprint Classification by Directional Image Partitioning , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Shu-Yuan Chen,et al.  Retrieval of translated, rotated and scaled color textures , 2003, Pattern Recognit..

[15]  Horst Bunke,et al.  Inexact graph matching for structural pattern recognition , 1983, Pattern Recognit. Lett..

[16]  Anil K. Jain,et al.  Is there any texture in the image? , 1996, Pattern Recognit..

[17]  LuminiAlessandra,et al.  Fingerprint Classification by Directional Image Partitioning , 1999 .

[18]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[19]  Adnan Amin,et al.  Fingerprint classification: a review , 2004, Pattern Analysis and Applications.

[20]  Horst Bunke,et al.  An Error-Tolerant Approximate Matching Algorithm for Attributed Planar Graphs and Its Application to Fingerprint Classification , 2004, SSPR/SPR.

[21]  Dario Maio,et al.  A structural approach to fingerprint classification , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[22]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..