Strength and ductility of high strength concrete-filled steel tubular beam-columns

The ultimate strength and ductility of high strength thin-walled concrete-filled steel tubular (CFST) beam–columns with local buckling effects, are investigated in this paper, using a performance-based analysis (PBA) technique. The PBA technique accounts for the effects of geometric imperfections, residual stresses, strain hardening, local buckling and concrete confinement on the behavior of high strength thin-walled CFST beam–columns. The accuracy of the PBA technique is further examined by comparisons with experimental results. The PBA program is employed to study the effects of depth-to-thickness ratio, concrete compressive strengths, steel yield strengths and axial load levels on the stiffness, strength and ductility of high strength thin-walled CFST beam–columns under combined axial load and biaxial bending. The results obtained indicate that increasing the depth-to-thickness ratio and axial load levels significantly reduces the stiffness, strength and ductility of CFST beam–columns. Increasing concrete compressive strengths increases the stiffness and strength, but reduces the axial ductility and section performance of CFST beam–columns. Moreover, the steel yield strength has a significant effect on the section and strength performance of CFST beam–columns but does not have a significant effect on their axial and curvature ductility.

[1]  Richard Sause,et al.  Experimental Behavior of High Strength Square Concrete-Filled Steel Tube Beam-Columns , 2002 .

[2]  M. Bradford,et al.  Local buckling of steel plates in double skin composite panels under biaxial compression and shear , 2004 .

[3]  Qing Quan Liang Performance-Based Optimization of Structures: Theory and Applications , 2004 .

[4]  Brian Uy,et al.  Strength of short concrete filled high strength steel box columns , 2001 .

[5]  Hiroyuki Nakahara,et al.  Behavior of centrally loaded concrete-filled steel-tube short columns , 2004 .

[6]  Kenji Sakino,et al.  ELASTO-PLASTIC BEHAVIOR OF CONCRETE FILLED SQUARE STEEL TUBULAR BEAM-COLUMNS , 1979 .

[7]  Jie Yuan,et al.  Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns , 2003 .

[8]  Jerome F. Hajjar,et al.  Representation of Concrete-Filled Steel Tube Cross-Section Strength , 1996 .

[9]  J. Mander,et al.  Theoretical stress strain model for confined concrete , 1988 .

[10]  Toshiaki Fujimoto,et al.  BEHAVIOR OF ECCENTRICALLY LOADED CONCRETE-FILLED STEEL TUBULAR COLUMNS , 2004 .

[11]  Jerome F. Hajjar,et al.  A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip , 1998 .

[12]  Qing Quan Liang,et al.  Performance-based analysis of concrete-filled steel tubular beam–columns, Part II: Verification and applications , 2009 .

[13]  Russell Q. Bridge,et al.  Behaviour of thin-walled steel box sections with or without internal restraint , 1998 .

[14]  H. D. Wright,et al.  Local Stability of Filled and Encased Steel Sections , 1995 .

[15]  Gregory G. Deierlein,et al.  Evaluation of ACI 318 and AISC (LRFD) strength provisions for composite beam-columns , 1995 .

[16]  Brian Uy,et al.  Local buckling of steel plates in concrete-filled thin-walled steel tubular beam–columns , 2007 .

[17]  Qing Quan Liang,et al.  Performance-based analysis of concrete-filled steel tubular beam–columns, Part I: Theory and algorithms , 2009 .

[18]  Stephen P. Schneider,et al.  Axially Loaded Concrete-Filled Steel Tubes , 1998 .

[19]  M. Ala Saadeghvaziri,et al.  State of the Art of Concrete-Filled Steel Tubular Columns , 1997 .

[20]  Richard W. Furlong,et al.  Strength of Steel-Encased Concrete Beam Columns , 1967 .

[21]  Richard Sause,et al.  Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam–columns , 2002 .

[22]  S. El-Tawil,et al.  STRENGTH AND DUCTILITY OF CONCRETE ENCASED COMPOSITE COLUMNS , 1999 .

[23]  Brian Uy,et al.  Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects , 2006 .

[24]  N. E. Shanmugam,et al.  An analytical model for thin-walled steel box columns with concrete in-fill , 2002 .

[25]  Brian Uy,et al.  Theoretical study on the post-local buckling of steel plates in concrete-filled box columns , 2000 .

[26]  Lin-Hai Han,et al.  Tests on Stub Columns of Concrete-filled RHS Sections , 2002 .

[27]  Masahide Tomii,et al.  Experimental Studies on Concrete-Filled Steel Tubular Stub Columns under Concentric Loading , 1977 .

[28]  Dalin Liu,et al.  Tests on high-strength rectangular concrete-filled steel hollow section stub columns , 2005 .

[29]  Kenji Sakino,et al.  EXPERIMENTAL STUDIES ON THE ULTIMATE MOMENT OF CONCRETE FILLED SQUARE STEEL TUBULAR BEAM-COLUMNS , 1979 .

[30]  N. E. Shanmugam,et al.  Nonlinear Analysis of In-Filled Steel-Concrete Composite Columns , 2002 .

[31]  K. F. Chung,et al.  Composite column design to Eurocode 4 : based on DD ENV 1994-1-1: 1994 Eurocode 4: design of composite steel and concrete structures: part 1.1: general rules and rules for buildings , 1994 .

[32]  Robert Park,et al.  Strength of Concrete Filled Steel Tubular Columns , 1969 .

[33]  Hanbin Ge,et al.  Strength of Concrete‐Filled Thin‐Walled Steel Box Columns: Experiment , 1992 .