SENSITIVITY ANALYSIS FOR THE OPTIMIZATION OF RADIOFREQUENCY ABLATION IN THE PRESENCE OF MATERIAL PARAMETER UNCERTAINTY

We present a sensitivity analysis of the optimization of the probe placement in radiofrequency (RF) ablation which takes the uncertainty associated with biophysical tissue properties (electrical and thermal conductivity) into account. Our forward simulation of RF ablation is based upon a system of partial differential equations (PDEs) that describe the electric potential of the probe and the steady state of the induced heat. The probe placement is optimized by minimizing a temperature-based objective function such that the volume of destroyed tumor tissue is maximized. The resulting optimality system is solved with a multilevel gradient descent approach. By evaluating the corresponding optimality system for certain realizations of tissue parameters (i.e., at certain, well-chosen points in the stochastic space) the sensitivity of the system can be analyzed with respect to variations in the tissue parameters. For the interpolation in the stochastic space we use an adaptive sparse grid collocation (ASGC) approach presented by Ma and Zabaras. We underscore the significance of the approach by applying the optimization to CT data obtained from a real RF ablation case.

[1]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  George E. Karniadakis,et al.  Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..

[3]  R. Fletcher Practical Methods of Optimization , 1988 .

[4]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[5]  Luc Soler,et al.  Radiofrequency ablation of hepatic tumors: simulation, planning, and contribution of virtual reality and haptics , 2005, Computer methods in biomechanics and biomedical engineering.

[6]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[7]  Heinz-Otto Peitgen,et al.  On the Modelling of Perfusion in the Simulation of RF-Ablation , 2005, SimVis.

[8]  Tim Kröger,et al.  Simulation of Radiofrequency Ablation Including Water Evaporation , 2009 .

[9]  F. C. Donders,et al.  Physiologie des Menschen , 1913, Nature.

[10]  Martin Rumpf,et al.  SIMULATION OF RADIO-FREQUENCY ABLATION USING COMPOSITE FINITE ELEMENT METHODS , 2004 .

[11]  H. H. Pennes Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948. , 1948, Journal of applied physiology.

[12]  S. Arrhenius Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren , 1889 .

[13]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[14]  Nicholas Zabaras,et al.  A markov random field model of contamination source identification in porous media flow , 2006 .

[15]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[16]  O. Harth,et al.  Wasserhaushalt, Stoff-, Flüssigkeitstransport , 1977 .

[17]  Tony W H Sheu,et al.  Three-dimensional analysis for radio-frequency ablation of liver tumor with blood perfusion effect , 2005, Computer methods in biomechanics and biomedical engineering.

[18]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[19]  Robert Michael Kirby,et al.  Application of Stochastic Finite Element Methods to Study the Sensitivity of ECG Forward Modeling to Organ Conductivity , 2008, IEEE Transactions on Biomedical Engineering.

[20]  Xiang Ma,et al.  An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations , 2010, J. Comput. Phys..

[21]  Christof Büskens,et al.  Towards Optimization of Probe Placement for Radio-Frequency Ablation , 2006, MICCAI.

[22]  J Crezee,et al.  The theoretical and experimental evaluation of the heat balance in perfused tissue. , 1994, Physics in medicine and biology.

[23]  Peter Deuflhard,et al.  A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia , 1998 .

[24]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[25]  F. Maltz,et al.  Variance reduction in Monte Carlo computations using multi-dimensional hermite polynomials , 1979 .

[26]  H. Peitgen,et al.  HepaVision2 — a software assistant for preoperative planning in living-related liver transplantation and oncologic liver surgery , 2002 .

[27]  Robert L. Galloway,et al.  Optimizing Electrode Placement Using Finite-Element Models in Radiofrequency Ablation Treatment Planning , 2009, IEEE Transactions on Biomedical Engineering.

[28]  Nicholas Zabaras,et al.  Using Bayesian statistics in the estimation of heat source in radiation , 2005 .

[29]  Heinz-Otto Peitgen,et al.  Numerical Simulation of Radio Frequency Ablation with State Dependent Material Parameters in Three Space Dimensions , 2006, MICCAI.

[30]  L. S. Hou,et al.  Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs , 2011 .

[31]  Andreas Keese,et al.  Numerical Solution of Systems with Stochastic Uncertainties : A General Purpose Framework for Stochastic Finite Elements , 2004 .

[32]  R K Jain,et al.  Blood flow and heat transfer in Walker 256 mammary carcinoma. , 1979, Journal of the National Cancer Institute.

[33]  J Crezee,et al.  Temperature uniformity during hyperthermia: the impact of large vessels. , 1992, Physics in medicine and biology.

[34]  J. Lagendijk The influence of bloodflow in large vessels on the temperature distribution in hyperthermia. , 1982, Physics in medicine and biology.

[35]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[36]  A. Chorin Hermite expansions in Monte-Carlo computation , 1971 .

[37]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[38]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[39]  Lena Maier-Hein,et al.  Computer-assisted trajectory planning for percutaneous needle insertions. , 2011, Medical physics.

[40]  Jie Shen,et al.  Efficient stochastic Galerkin methods for random diffusion equations , 2009, J. Comput. Phys..

[41]  E. Polak,et al.  Minimax optimization-based inverse treatment planning for interstitial thermal therapy. , 1998, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[42]  M. Rumpf,et al.  Composite finite elements for 3D image based computing , 2009 .

[43]  John G. Webster,et al.  Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size , 2003, IEEE Transactions on Biomedical Engineering.

[44]  Robert Michael Kirby,et al.  Estimation of Probability Density Functions for Parameter Sensitivity Analyses , 2008, SimVis.

[45]  Ming Li,et al.  Mixed variable optimization for radio frequency ablation planning , 2011, Medical Imaging.

[46]  P. Wolf,et al.  A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation , 2000, Annals of Biomedical Engineering.

[47]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[48]  N. Zabaras,et al.  Stochastic inverse heat conduction using a spectral approach , 2004 .

[49]  Luc Soler,et al.  Optimal Trajectories Computation Within Regions of Interest for Hepatic RFA Planning , 2005, MICCAI.

[50]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[51]  Robert Michael Kirby,et al.  Stochastic Collocation for Optimal Control Problems with Stochastic PDE Constraints , 2012, SIAM J. Control. Optim..

[52]  Christof Büskens,et al.  Multiscale optimization of the probe placement for radiofrequency ablation. , 2007, Academic radiology.

[53]  Nicholas Zabaras,et al.  Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .

[54]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[55]  Jangwoon Lee,et al.  Error Estimates of Stochastic Optimal Neumann Boundary Control Problems , 2011, SIAM J. Numer. Anal..

[56]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[57]  Hong Cao,et al.  Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation , 2002, IEEE Trans. Biomed. Eng..

[58]  Helmut Ermert,et al.  Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation / Untersuchung des Einflusses der Blutflussgeschwindigkeit auf die Gefäßkühlung bei der Radiofrequenzablation von Lebertumoren , 2006, Biomedizinische Technik. Biomedical engineering.

[59]  Elisabeth Ullmann,et al.  Computational aspects of the stochastic finite element method , 2007 .

[60]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[61]  Kemal Tuncali,et al.  Pre- and Intra-operative Planning and Simulation of Percutaneous Tumor Ablation , 2000, MICCAI.

[62]  A. Chorin Gaussian fields and random flow , 1974, Journal of Fluid Mechanics.

[63]  H. Rhim,et al.  Intrahepatic recurrence after percutaneous radiofrequency ablation of hepatocellular carcinoma: analysis of the pattern and risk factors. , 2006, European journal of radiology.

[64]  W. Meecham,et al.  Use of the Wiener—Hermite expansion for nearly normal turbulence , 1968, Journal of Fluid Mechanics.

[65]  H. F. Bowman,et al.  Heat transfer and thermal dosimetry. , 1981, The Journal of microwave power.

[66]  Luc Soler,et al.  Trajectory optimization for the planning of percutaneous radiofrequency ablation of hepatic tumors , 2007, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.