Adaptive fuzzy modeling versus artificial neural networks

In this paper two areas of soft computing (fuzzy modeling and artificial neural networks) are discussed. Based on the fundamental mathematical similarity of fuzzy techniques and radial basis function networks a new training algorithm for fuzzy models is introduced. A feed forward neural network (NN), a radial basis function network (RBF) and a trained fuzzy algorithm are compared for regional yield estimation of agricultural crops (winter rye, winter barley). As training pattern a data set from a training region (Maerkisch-Oderland district, Germany) and as test pattern a data set from a three times larger region were used. Specific advantages and disadvantages of these methods for the estimation of yield were discussed.

[1]  William J. Schroeder,et al.  The Visualization Toolkit , 2005, The Visualization Handbook.

[2]  Yoshua Bengio,et al.  Inference for the Generalization Error , 1999, Machine Learning.

[3]  Granino A. Korn Model replication techniques for parameter-influence studies and Monte Carlo simulation with random parameters , 2005, Math. Comput. Simul..

[4]  Emanuele Eccel,et al.  Descriptive models and artificial neural networks for spring frost prediction in an agricultural mountain area , 2006 .

[5]  Neil Gershenfeld,et al.  The nature of mathematical modeling , 1998 .

[6]  Lotfi A. Zadeh,et al.  Fuzzy Algorithms , 1968, Inf. Control..

[7]  R. Wieland,et al.  The use of neural networks in agroecological modelling , 1995 .

[8]  James A. Freeman,et al.  Simulating neural networks - with Mathematica , 1993 .

[9]  Ralf Wieland,et al.  Spatial Analysis and Modeling Tool (SAMT): 1. Structure and possibilities , 2006, Ecol. Informatics.

[10]  Alfred Schultz,et al.  Neural networks in agroecological modelling - stylish application or helpful tool? , 2000 .

[11]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[12]  Robert Hecht-Nielsen,et al.  Applications of counterpropagation networks , 1988, Neural Networks.

[13]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[14]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[15]  Holger Lutz,et al.  Taschenbuch der Regelungstechnik , 1995 .

[16]  J.C. Principe,et al.  Innovating adaptive and neural systems instruction with interactive electronic books , 2000, Proceedings of the IEEE.

[17]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[18]  Bing Yu,et al.  Training radial basis function networks with differential evolution , 2006, 2006 IEEE International Conference on Granular Computing.

[19]  Granino A. Korn Advanced Dynamic-system Simulation , 2007 .

[20]  Roman Lenz,et al.  Ecosystem approaches to landscape management in Central Europe , 2001 .

[21]  Frank Klawonn,et al.  Neuro-Fuzzy-Systeme , 2003, Neuro-Fuzzy-Systeme.

[22]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[23]  H. C. Card,et al.  Linguistic interpretation of self-organizing maps , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[24]  R. Wieland,et al.  Land Use Change and Habitat Quality in Northeast German Agro-landscapes , 2001 .

[25]  James L. McClelland Explorations In Parallel Distributed Processing , 1988 .

[26]  R. Lacroix,et al.  Methods of predicting milk yield in dairy cows-Predictive capabilities of Wood's lactation curve and artificial neural networks (ANNs) , 2006 .