Gamma Rhythms Link Prefrontal Interneuron Dysfunction with Cognitive Inflexibility in Dlx5/6 +/− Mice

Abnormalities in GABAergic interneurons, particularly fast-spiking interneurons (FSINs) that generate gamma (γ; ∼30-120 Hz) oscillations, are hypothesized to disrupt prefrontal cortex (PFC)-dependent cognition in schizophrenia. Although γ rhythms are abnormal in schizophrenia, it remains unclear whether they directly influence cognition. Mechanisms underlying schizophrenia's typical post-adolescent onset also remain elusive. We addressed these issues using mice heterozygous for Dlx5/6, which regulate GABAergic interneuron development. In Dlx5/6(+/-) mice, FSINs become abnormal following adolescence, coinciding with the onset of cognitive inflexibility and deficient task-evoked γ oscillations. Inhibiting PFC interneurons in control mice reproduced these deficits, whereas stimulating them at γ-frequencies restored cognitive flexibility in adult Dlx5/6(+/-) mice. These pro-cognitive effects were frequency specific and persistent. These findings elucidate a mechanism whereby abnormal FSIN development may contribute to the post-adolescent onset of schizophrenia endophenotypes. Furthermore, they demonstrate a causal, potentially therapeutic, role for PFC interneuron-driven γ oscillations in cognitive domains at the core of schizophrenia.

[1]  William A Catterall,et al.  Autistic behavior in Scn1a+/− mice and rescue by enhanced GABAergic transmission , 2012, Nature.

[2]  R. McCarley,et al.  Long-range synchrony of γ oscillations and auditory hallucination symptoms in schizophrenia. , 2011, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[3]  R. McCarley,et al.  Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia , 2009, BMC Neuroscience.

[4]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[5]  S. Siegel,et al.  NMDA antagonists recreate signal-to-noise ratio and timing perturbations present in schizophrenia , 2012, Neurobiology of Disease.

[6]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[7]  Ethan M. Goldberg,et al.  Rapid developmental maturation of neocortical FS cell intrinsic excitability. , 2011, Cerebral cortex.

[8]  D. Volk,et al.  Prenatal ontogeny as a susceptibility period for cortical GABA neuron disturbances in schizophrenia , 2013, Neuroscience.

[9]  Gregory V. Simpson,et al.  Computerized Cognitive Training Restores Neural Activity within the Reality Monitoring Network in Schizophrenia , 2012, Neuron.

[10]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[11]  M. C. Angulo,et al.  Molecular and Physiological Diversity of Cortical Nonpyramidal Cells , 1997, The Journal of Neuroscience.

[12]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[13]  György Buzsáki,et al.  Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo , 1998, The European journal of neuroscience.

[14]  C. Carter,et al.  Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia , 2006, Proceedings of the National Academy of Sciences.

[15]  Michael F. Green,et al.  Quantitative Eeg and Low Resolution Electromagnetic Tomography (loreta) Imaging of Patients with Persistent Auditory Hallucinations , 2005 .

[16]  J. Rubenstein,et al.  Pyramidal Neurons in Prefrontal Cortex Receive Subtype-Specific Forms of Excitation and Inhibition , 2014, Neuron.

[17]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[18]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Sarah E. Forster,et al.  Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. , 2008, The American journal of psychiatry.

[20]  K. Nakazawa,et al.  Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes , 2010, Nature Neuroscience.

[21]  Jessica A. Cardin,et al.  A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior , 2011, Molecular Psychiatry.

[22]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[23]  Cameron S Carter,et al.  Gamma Oscillatory Power is Impaired During Cognitive Control Independent of Medication Status in First-Episode Schizophrenia , 2010, Neuropsychopharmacology.

[24]  Ken Sugino,et al.  Transcriptional and Electrophysiological Maturation of Neocortical Fast-Spiking GABAergic Interneurons , 2009, The Journal of Neuroscience.

[25]  Cameron S. Carter,et al.  Developing treatments for impaired cognition in schizophrenia , 2012, Trends in Cognitive Sciences.

[26]  N. Dehorter,et al.  Erbb4 Deletion from Fast-Spiking Interneurons Causes Schizophrenia-like Phenotypes , 2013, Neuron.

[27]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[28]  A. Belger,et al.  Dissociation of ketamine effects on rule acquisition and rule implementation: possible relevance to NMDA receptor contributions to executive cognitive functions , 2000, Biological Psychiatry.

[29]  Geoffrey Schoenbaum,et al.  Double Dissociation of the Effects of Medial and Orbital Prefrontal Cortical Lesions on Attentional and Affective Shifts in Mice , 2008, The Journal of Neuroscience.

[30]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[31]  K. Deisseroth,et al.  Dlx5 and Dlx6 Regulate the Development of Parvalbumin-Expressing Cortical Interneurons , 2010, The Journal of Neuroscience.

[32]  Hannah Monyer,et al.  NMDA Receptor Ablation on Parvalbumin-Positive Interneurons Impairs Hippocampal Synchrony, Spatial Representations, and Working Memory , 2010, Neuron.

[33]  Dominique L. Pritchett,et al.  Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli , 2014, Nature Neuroscience.

[34]  M. Roesch,et al.  Interneurons Are Necessary for Coordinated Activity During Reversal Learning in Orbitofrontal Cortex , 2015, Biological Psychiatry.

[35]  R. Llinás,et al.  In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Michael F. Green,et al.  Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. , 2006, The Journal of clinical psychiatry.

[37]  V. Arolt,et al.  Anterior cingulate cortex activation is related to learning potential on the WCST in schizophrenia patients , 2012, Brain and Cognition.

[38]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[39]  Vince D. Calhoun,et al.  Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients , 2010, NeuroImage.

[40]  C. Carter,et al.  Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  W. Singer,et al.  Abnormal neural oscillations and synchrony in schizophrenia , 2010, Nature Reviews Neuroscience.