Revealing protein–lncRNA interaction

Long non-coding RNAs (lncRNAs) are associated to a plethora of cellular functions, most of which require the interaction with one or more RNA-binding proteins (RBPs); similarly, RBPs are often able to bind a large number of different RNAs. The currently available knowledge is already drawing an intricate network of interactions, whose deregulation is frequently associated to pathological states. Several different techniques were developed in the past years to obtain protein–RNA binding data in a high-throughput fashion. In parallel, in silico inference methods were developed for the accurate computational prediction of the interaction of RBP–lncRNA pairs. The field is growing rapidly, and it is foreseeable that in the near future, the protein–lncRNA interaction network will rise, offering essential clues for a better understanding of lncRNA cellular mechanisms and their disease-associated perturbations.

[1]  Jernej Ule,et al.  CLIP: a method for identifying protein-RNA interaction sites in living cells. , 2005, Methods.

[2]  Richard Bonneau,et al.  The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. , 2012, Molecular cell.

[3]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[4]  Tim R. Mercer,et al.  NRED: a database of long noncoding RNA expression , 2008, Nucleic Acids Res..

[5]  J. Vandesompele,et al.  An update on LNCipedia: a database for annotated human lncRNA sequences , 2015, Nucleic Acids Res..

[6]  Andrea Barta,et al.  Identification of RNA targets for the nuclear multidomain cyclophilin atCyp59 and their effect on PPIase activity , 2012, Nucleic acids research.

[7]  David Tollervey,et al.  Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast , 2011, Proceedings of the National Academy of Sciences.

[8]  Martin C. Frith,et al.  Discovering Sequence Motifs with Arbitrary Insertions and Deletions , 2008, PLoS Comput. Biol..

[9]  Carolyn J. Brown,et al.  The functional role of long non-coding RNA in human carcinomas , 2011, Molecular Cancer.

[10]  Sevim Ozgur,et al.  Posttranscriptional destabilization of the liver‐specific long noncoding RNA HULC by the IGF2 mRNA‐binding protein 1 (IGF2BP1) , 2013, Hepatology.

[11]  M. Hiller,et al.  Using RNA secondary structures to guide sequence motif finding towards single-stranded regions , 2006, Nucleic acids research.

[12]  Marvin Wickens,et al.  Cooperativity in RNA-protein interactions: global analysis of RNA binding specificity. , 2012, Cell reports.

[13]  Hui Zhou,et al.  ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data , 2012, Nucleic Acids Res..

[14]  Sayan Mukherjee,et al.  Evidence-ranked motif identification , 2010, Genome Biology.

[15]  R. Backofen,et al.  GraphProt: modeling binding preferences of RNA-binding proteins , 2014, Genome Biology.

[16]  Renato Paro,et al.  Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data , 2012, Nucleic acids research.

[17]  Robert Petryszak,et al.  ArrayExpress update—simplifying data submissions , 2014, Nucleic Acids Res..

[18]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[19]  Kiranmai Gumireddy,et al.  Identification of a long non‐coding RNA‐associated RNP complex regulating metastasis at the translational step , 2013, The EMBO journal.

[20]  Eric S Lander,et al.  RNA antisense purification (RAP) for mapping RNA interactions with chromatin. , 2015, Methods in molecular biology.

[21]  Andrew D. Smith,et al.  Site identification in high-throughput RNA-protein interaction data , 2012, Bioinform..

[22]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[23]  R. Kurokawa,et al.  Promoter-associated long noncoding RNAs repress transcription through a RNA binding protein TLS. , 2011, Advances in experimental medicine and biology.

[24]  Bangshun He,et al.  Analysis of long non-coding RNA expression profiles in gastric cancer. , 2013, World journal of gastroenterology.

[25]  Qingqing Cai,et al.  linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. , 2013, Biochimica et biophysica acta.

[26]  Kai Blin,et al.  DoRiNA 2.0—upgrading the doRiNA database of RNA interactions in post-transcriptional regulation , 2014, Nucleic Acids Res..

[27]  Donny D. Licatalosi,et al.  RNA processing and its regulation: global insights into biological networks , 2010, Nature Reviews Genetics.

[28]  Alfredo Pulvirenti,et al.  Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human , 2014, Front. Bioeng. Biotechnol..

[29]  Pamela A. Silver,et al.  Visualization of single mRNAs reveals temporal association of proteins with microRNA-regulated mRNA , 2011, Nucleic acids research.

[30]  Yang Xie,et al.  PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis , 2014, Genome Biology.

[31]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[32]  Quaid Morris,et al.  RBPmotif: a web server for the discovery of sequence and structure preferences of RNA-binding proteins , 2013, Nucleic Acids Res..

[33]  C. Lorenz,et al.  Genomic systematic evolution of ligands by exponential enrichment (Genomic SELEX) for the identification of protein-binding RNAs independent of their expression levels , 2006, Nature Protocols.

[34]  S. Raguz,et al.  Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. , 2010, Molecular cell.

[35]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[36]  Shun Liu,et al.  Discovery of Protein–lncRNA Interactions by Integrating Large-Scale CLIP-Seq and RNA-Seq Datasets , 2015, Front. Bioeng. Biotechnol..

[37]  Jordan M. Komisarow,et al.  RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts , 2006, Nature Protocols.

[38]  Bernd Fischer,et al.  RNA-binding proteins in Mendelian disease. , 2013, Trends in genetics : TIG.

[39]  Kotb Abdelmohsen,et al.  PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity , 2014, Nature Communications.

[40]  Qianlan Yao,et al.  A global view of network of lncRNAs and their binding proteins. , 2015, Molecular bioSystems.

[41]  P. Stadler,et al.  The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model. , 2005, Gene.

[42]  Toshiro K. Ohsumi,et al.  Genome-wide identification of polycomb-associated RNAs by RIP-seq. , 2010, Molecular cell.

[43]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[44]  R. Altman,et al.  Collective judgment predicts disease-associated single nucleotide variants , 2013, BMC Genomics.

[45]  Eduardo Eyras,et al.  DGCR8 HITS-CLIP reveals novel functions for the Microprocessor , 2012, Nature Structural &Molecular Biology.

[46]  Yue Zhao,et al.  Inferring Binding Energies from Selected Binding Sites , 2009, PLoS Comput. Biol..

[47]  Uwe Ohler,et al.  Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. , 2011, Molecular cell.

[48]  Wei Zhao,et al.  The Functional Characterization of Long Noncoding RNA SPRY4-IT1 in Human Melanoma Cells , 2014, Oncotarget.

[49]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[50]  Matthias Mann,et al.  Quantitative mass spectrometry and PAR-CLIP to identify RNA-protein interactions , 2012, Nucleic acids research.

[51]  Yan Wang,et al.  Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. , 2012, American journal of translational research.

[52]  Blaz Zupan,et al.  iCLIP - Transcriptome-wide Mapping of Protein-RNA Interactions with Individual Nucleotide Resolution , 2011, Journal of visualized experiments : JoVE.

[53]  Hui Li,et al.  Long noncoding RNA HOTAIR involvement in cancer , 2014, Tumor Biology.

[54]  Yael Mandel-Gutfreund,et al.  RBPmap: a web server for mapping binding sites of RNA-binding proteins , 2014, Nucleic Acids Res..

[55]  Emily Bernstein,et al.  RNA meets chromatin. , 2005, Genes & development.

[56]  Howard Y. Chang,et al.  Technologies to probe functions and mechanisms of long noncoding RNAs , 2015, Nature Structural &Molecular Biology.

[57]  P. Sharp,et al.  RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. , 2014, Molecular cell.

[58]  J. Cai,et al.  HOTAIR: a cancer-related long non-coding RNA. , 2014, Neoplasma.

[59]  Teresa M. Przytycka,et al.  Identification of sequence-structure RNA binding motifs for SELEX-derived aptamers , 2012, Bioinform..

[60]  Howard Y. Chang,et al.  Long intergenic noncoding RNAs: new links in cancer progression. , 2011, Cancer research.

[61]  Lourdes Peña Castillo,et al.  Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins , 2009, Nature Biotechnology.

[62]  R. Darnell,et al.  The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo , 1997, Molecular and cellular biology.

[63]  Zasha Weinberg,et al.  CMfinder - a covariance model based RNA motif finding algorithm , 2006, Bioinform..

[64]  John S. Mattick,et al.  lncRNAdb: a reference database for long noncoding RNAs , 2010, Nucleic Acids Res..

[65]  Shuigeng Zhou,et al.  Computationally predicting protein-RNA interactions using only positive and unlabeled examples , 2015, J. Bioinform. Comput. Biol..

[66]  Tyson A. Clark,et al.  HITS-CLIP yields genome-wide insights into brain alternative RNA processing , 2008, Nature.

[67]  C. Glass,et al.  Induced ncRNAs Allosterically Modify RNA Binding Proteins in cis to Inhibit Transcription , 2008, Nature.

[68]  Albrecht Bindereif,et al.  Analysis of RNA-protein complexes by oligonucleotide-targeted RNase H digestion. , 2002, Methods.

[69]  Q. Morris,et al.  Finding the target sites of RNA-binding proteins , 2013, Wiley interdisciplinary reviews. RNA.

[70]  Mohsen Khorshid,et al.  CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins , 2010, Nucleic Acids Res..

[71]  Piero Carninci,et al.  Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat , 2012, Nature.

[72]  Quaid Morris,et al.  Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. , 2010, RNA.

[73]  J. Bähler,et al.  In silico characterization and prediction of global protein–mRNA interactions in yeast , 2011, Nucleic acids research.

[74]  Myriam Gorospe,et al.  HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation , 2000, The EMBO journal.

[75]  Eran Segal,et al.  Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes , 2008, Proceedings of the National Academy of Sciences.

[76]  Hsien-Da Huang,et al.  A computational approach for identifying microRNA-target interactions using high-throughput CLIP and PAR-CLIP sequencing , 2013, BMC Genomics.

[77]  David Tollervey,et al.  Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs , 2009, Proceedings of the National Academy of Sciences.

[78]  Howard Y. Chang,et al.  A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression , 2011, Nature.

[79]  B. Blencowe,et al.  The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. , 2010, Molecular cell.

[80]  Vasant Honavar,et al.  Predicting RNA-Protein Interactions Using Only Sequence Information , 2011, BMC Bioinformatics.

[81]  Daniel Herschlag,et al.  Diverse RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggesting an Extensive Regulatory System , 2008, PLoS biology.

[82]  Guanghua Xiao,et al.  A Model-Based Approach to Identify Binding Sites in CLIP-Seq Data , 2014, PloS one.

[83]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[84]  David Tollervey,et al.  A Transcriptome-wide Atlas of RNP Composition Reveals Diverse Classes of mRNAs and lncRNAs , 2013, Cell.

[85]  D. Reinberg,et al.  Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. , 2014, Molecular cell.

[86]  Xuegong Zhang,et al.  Computational prediction of associations between long non-coding RNAs and proteins , 2013, BMC Genomics.

[87]  S. Cusack RNA-protein complexes. , 1999, Current opinion in structural biology.

[88]  K. Neugebauer,et al.  RNA-protein interactions in vivo: global gets specific. , 2012, Trends in biochemical sciences.

[89]  Sonja Althammer,et al.  Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data , 2011, Bioinform..

[90]  O. Bensaude,et al.  Non‐coding RNAs regulating the transcriptional machinery , 2008, Biology of the cell.

[91]  Gabriele Ausiello,et al.  A novel approach to represent and compare RNA secondary structures , 2014, Nucleic acids research.

[92]  Brendan J. Frey,et al.  A compendium of RNA-binding motifs for decoding gene regulation , 2013, Nature.

[93]  L. Maquat,et al.  Biochemical analysis of long non-coding RNA-containing ribonucleoprotein complexes. , 2012, Methods.

[94]  Jeroen Krijgsveld,et al.  The RNA-binding protein repertoire of embryonic stem cells , 2013, Nature Structural &Molecular Biology.

[95]  Howard Y. Chang,et al.  Quantitative analysis of RNA-protein interactions on a massively parallel array for mapping biophysical and evolutionary landscapes , 2014, Nature Biotechnology.

[96]  Howard Y. Chang,et al.  Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. , 2011, Molecular cell.

[97]  J. Rinn,et al.  Large non-coding RNAs: missing links in cancer? , 2010, Human molecular genetics.

[98]  Xiang-Sun Zhang,et al.  De novo prediction of RNA-protein interactions from sequence information. , 2013, Molecular bioSystems.

[99]  David R. Latulippe,et al.  RAPID-SELEX for RNA Aptamers , 2013, PLoS ONE.

[100]  R. Darnell,et al.  Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data , 2011, Nature Biotechnology.

[101]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[102]  L. Hellman,et al.  Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions , 2007, Nature Protocols.

[103]  Matthias Mann,et al.  Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators , 2013, Genome research.

[104]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[105]  C. Lorenz,et al.  Genomic SELEX: A discovery tool for genomic aptamers , 2010, Methods.

[106]  Sarah Geisler,et al.  RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts , 2013, Nature Reviews Molecular Cell Biology.

[107]  Wei Wu,et al.  NONCODEv4: exploring the world of long non-coding RNA genes , 2013, Nucleic Acids Res..

[108]  Enrico Blanzieri,et al.  Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures , 2014, BMC Bioinformatics.

[109]  A. von Haeseler,et al.  Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts , 2010, Nucleic acids research.

[110]  Ling Li,et al.  The non-coding RNA llme23 drives the malignant property of human melanoma cells. , 2013, Journal of genetics and genomics = Yi chuan xue bao.

[111]  A. Chinnaiyan,et al.  The emergence of lncRNAs in cancer biology. , 2011, Cancer discovery.

[112]  M. Guttman,et al.  Methods for comprehensive experimental identification of RNA-protein interactions , 2014, Genome Biology.

[113]  Uwe Ohler,et al.  PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data , 2011, Genome Biology.

[114]  Kai-Wei Chang,et al.  RNA-binding proteins in human genetic disease. , 2008, Trends in genetics : TIG.

[115]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[116]  Federico Agostini,et al.  Predicting protein associations with long noncoding RNAs , 2011, Nature Methods.

[117]  Philip J. Uren,et al.  Leveraging cross-link modification events in CLIP-seq for motif discovery , 2014, Nucleic acids research.

[118]  Pu Zhang,et al.  DNMT1-interacting RNAs block gene specific DNA methylation , 2013, Nature.

[119]  Ravinder Singh,et al.  RNA-protein interactions that regulate pre-mRNA splicing. , 2002, Gene expression.

[120]  Brad A Chapman,et al.  The genomic binding sites of a noncoding RNA , 2011, Proceedings of the National Academy of Sciences.

[121]  Wei Wu,et al.  NPInter v2.0: an updated database of ncRNA interactions , 2013, Nucleic Acids Res..

[122]  V. Suresh,et al.  RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information , 2015, Nucleic acids research.

[123]  S. Janga,et al.  Dissecting the expression landscape of RNA-binding proteins in human cancers , 2014, Genome Biology.

[124]  Norman E. Davey,et al.  Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins , 2012, Cell.

[125]  Quaid Morris,et al.  RNAcontext: A New Method for Learning the Sequence and Structure Binding Preferences of RNA-Binding Proteins , 2010, PLoS Comput. Biol..

[126]  Juanjuan Zhu,et al.  Function of lncRNAs and approaches to lncRNA-protein interactions , 2013, Science China Life Sciences.

[127]  Mihaela Zavolan,et al.  Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression. , 2010, Briefings in functional genomics.

[128]  Barrett C. Foat,et al.  Discovering structural cis-regulatory elements by modeling the behaviors of mRNAs , 2009, Molecular systems biology.

[129]  Mohsen Khorshid,et al.  PAR-CliP - A Method to Identify Transcriptome-wide the Binding Sites of RNA Binding Proteins , 2010, Journal of visualized experiments : JoVE.

[130]  Hui Zhou,et al.  starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data , 2013, Nucleic Acids Res..

[131]  J. Greenblatt,et al.  RIPSeeker: a statistical package for identifying protein-associated transcripts from RIP-seq experiments , 2013, Nucleic acids research.

[132]  Timothy R. Hughes,et al.  High-throughput characterization of protein–RNA interactions , 2014, Briefings in functional genomics.

[133]  Philipp C. Münch,et al.  Biochemical and bioinformatic methods for elucidating the role of RNA–protein interactions in posttranscriptional regulation , 2014, Briefings in functional genomics.

[134]  S. Ataide,et al.  Ribonomic approaches to study the RNA‐binding proteome , 2014, FEBS letters.

[135]  Linda Jeffery,et al.  Components of the DNA Methylation System of Chromatin Control Are RNA-binding Proteins* , 2004, Journal of Biological Chemistry.