Object Detection Using Keygraphs

We propose a new framework for object detection based on a generalization of the keypoint correspondence framework. This framework is based on replacing keypoints by keygraphs, i.e. isomorph directed graphs whose vertices are keypoints, in order to explore relative and structural information. Unlike similar works in the literature, we deal directly with graphs in the entire pipeline: we search for graph correspondences instead of searching for individual point correspondences and then building graph correspondences from them afterwards. We also estimate the pose from graph correspondences instead of falling back to point correspondences through a voting table. The contributions of this paper are the proposed framework and an implementation that properly handles its inherent issues of loss of locality and combinatorial explosion, showing its viability for real-time applications. In particular, we introduce the novel concept of keytuples to solve a running time issue. The accuracy of the implementation is shown by results of over 800 experiments with a well-known database of images. The speed is illustrated by real-time tracking with two different cameras in ordinary hardware.

[1]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[2]  J. van Leeuwen,et al.  Graph Based Representations in Pattern Recognition , 2003, Lecture Notes in Computer Science.

[3]  Roberto Marcondes Cesar Junior,et al.  Inexact graph matching for model-based recognition: Evaluation and comparison of optimization algorithms , 2005, Pattern Recognit..

[4]  Nassir Navab,et al.  N3M: Natural 3D Markers for Real-Time Object Detection and Pose Estimation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[5]  Robert Hecht Nielsen,et al.  Applied Graph Theory in Computer Vision and Pattern Recognition , 2007, Studies in Computational Intelligence.

[6]  Kurt Konolige,et al.  CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching , 2008, ECCV.

[7]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[9]  Alexander J. Smola,et al.  Learning Graph Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[11]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[12]  Richard I. Hartley,et al.  Optimised KD-trees for fast image descriptor matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[14]  Stefan Carlsson,et al.  Wide Baseline Point Matching Using Affine Invariants Computed from Intensity Profiles , 2000, ECCV.

[15]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Alex Zelinsky,et al.  Learning OpenCV---Computer Vision with the OpenCV Library (Bradski, G.R. et al.; 2008)[On the Shelf] , 2009, IEEE Robotics & Automation Magazine.

[17]  M. Rukoz,et al.  Embedding spatial information into image content description for scene retrieval , 2010, Pattern Recognit..

[18]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[19]  Andrew Zisserman,et al.  Video Google: Efficient Visual Search of Videos , 2006, Toward Category-Level Object Recognition.

[20]  Ming Yang,et al.  Discovery of Collocation Patterns: from Visual Words to Visual Phrases , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Hai Tao,et al.  Object tracking with dynamic feature graph , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[24]  Cem Ünsalan,et al.  Urban-Area and Building Detection Using SIFT Keypoints and Graph Theory , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[26]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[27]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[28]  Vincent Lepetit,et al.  Keypoint recognition using randomized trees , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Marta Rukoz,et al.  Estimating the indexability of multimedia descriptors for similarity searching , 2010, RIAO.

[30]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[31]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[32]  Roberto Marcondes Cesar Junior,et al.  Keygraphs for Sign Detection in Indoor Environments by Mobile Phones , 2011, GbRPR.

[33]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[34]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[35]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[37]  Yasushi Kanazawa,et al.  Wide Baseline Matching using Triplet Vector Descriptor , 2006, BMVC.

[38]  Gustavo Carneiro,et al.  Sparse Flexible Models of Local Features , 2006, ECCV.

[39]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[40]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[41]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[42]  Marta Rukoz,et al.  Qualitative comparison of audio and visual descriptors distributions , 2010, 2010 International Conference on Multimedia Computing and Information Technology (MCIT).

[43]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[45]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[46]  D. S. Guru,et al.  Symbolic image indexing and retrieval by spatial similarity: An approach based on B-tree , 2008, Pattern Recognit..

[47]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[48]  Alexei A. Efros,et al.  Discovering objects and their location in images , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[49]  Martial Hebert,et al.  Beyond Local Appearance: Category Recognition from Pairwise Interactions of Simple Features , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[51]  Stefan Carlsson,et al.  Combining Appearance and Topology for Wide Baseline Matching , 2002, ECCV.

[52]  Carlo Tomasi,et al.  Critical Nets and Beta-Stable Features for Image Matching , 2010, ECCV.

[53]  Mosalam Ebrahimi,et al.  SUSurE: Speeded Up Surround Extrema feature detector and descriptor for realtime applications , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[54]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[55]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[56]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[57]  Guillaume Bouchard,et al.  Hierarchical part-based visual object categorization , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[58]  Daniel P. Huttenlocher,et al.  Spatial priors for part-based recognition using statistical models , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[59]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .