POLE mutations in families predisposed to cutaneous melanoma
暂无分享,去创建一个
Nicholas G. Martin | Ian Tomlinson | Grant W. Montgomery | Ellen Heitzer | Stephen Kearsey | N. Martin | G. Montgomery | N. Hayward | I. Tomlinson | P. Johansson | A. Pritchard | A. Gerdes | S. Kearsey | E. Heitzer | L. Aoude | M. Gartside | J. Palmer | J. Symmons | K. Wadt | Anne-Marie Gerdes | Peter Johansson | Nicholas K. Hayward | Lauren G. Aoude | Michael Gartside | Karin Wadt | Antonia L. Pritchard | Jane M. Palmer | Judith Symmons | N. Martin
[1] L. Sandkuijl,et al. Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds , 1995, Nature Genetics.
[2] Igor V. Shevelev,et al. The 3|[prime]||[ndash]|5|[prime]| exonucleases , 2002 .
[3] N. Hayward,et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma , 1996, Nature Genetics.
[4] M. Skolnick,et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus , 1994, Nature Genetics.
[5] D. Duffy,et al. The Queensland Study of Melanoma: Environmental and Genetic Associations (Q-MEGA); Study Design, Baseline Characteristics, and Repeatability of Phenotype and Sun Exposure Measures , 2008, Twin Research and Human Genetics.
[6] S. Moreno,et al. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. , 1991, Methods in enzymology.
[7] Peter Donnelly,et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas , 2013, Nature Genetics.
[8] J. Cayuela,et al. Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. , 1998, Cancer research.
[9] Robert E. Johnson,et al. Crystal Structure of Yeast DNA Polymerase ε Catalytic Domain , 2014, PloS one.
[10] Chang-Xing Ma,et al. Fluctuation AnaLysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbrück fluctuation analysis , 2009, Bioinform..
[11] Richard Durbin,et al. Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .
[12] U. Hübscher,et al. The 3′–5′ exonucleases , 2002, Nature Reviews Molecular Cell Biology.
[13] Shirley A. Miller,et al. A simple salting out procedure for extracting DNA from human nucleated cells. , 1988, Nucleic acids research.
[14] E. Johansson,et al. Structural basis for processive DNA synthesis by yeast DNA polymerase ɛ , 2013, Nature Structural &Molecular Biology.
[15] D. Schadendorf,et al. TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.
[16] N. Martin,et al. Melanoma in adolescents: A case‐control study of risk factors in Queensland, Australia , 2002, International journal of cancer.
[17] W. McWhirter,et al. Risk factors for childhood melanoma in Queensland, Australia , 1997, International journal of cancer.
[18] E. Lehmann,et al. Different frameshift mutation spectra in non-repetitive DNA of MutSα- and MutLα-deficient fission yeast cells , 2003 .
[19] W. McWhirter,et al. Incidence of cutaneous childhood melanoma in Queensland, Australia , 1995, International journal of cancer.
[20] W. Clark,et al. Germline p16 mutations in familial melanoma , 1994, Nature Genetics.
[21] A. Sugino,et al. The 3'-->5' exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. , 1994, Molecular & general genetics : MGG.
[22] Thomas M. Keane,et al. POT1 loss-of-function variants predispose to familial melanoma , 2014, Nature Genetics.
[23] Gonçalo R. Abecasis,et al. The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..
[24] Thomas M. Keane,et al. Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. , 2015, Journal of the National Cancer Institute.
[25] N. Martin,et al. The Queensland Familial Melanoma Project: study design and characteristics of participants , 1996, Melanoma research.
[26] R. Goldsby,et al. DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice , 2009, Proceedings of the National Academy of Sciences.
[27] J. A. Bishop,et al. Genetic heterogeneity in familial malignant melanoma. , 1994, Human molecular genetics.
[28] N. Hayward,et al. Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. , 1995, Human molecular genetics.
[29] D. Stoppa-Lyonnet,et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. , 1998, Human molecular genetics.
[30] Structural basis for processive DNA synthesis by yeast DNA polymerase ε , 2014 .
[31] D. Whiteman,et al. p53 expression and risk factors for cutaneous melanoma: A case‐control study , 1998, International journal of cancer.
[32] P. Philippsen,et al. Heterologous modules for efficient and versatile PCR‐based gene targeting in Schizosaccharomyces pombe , 1998, Yeast.
[33] G. Karlsson,et al. A mutation in POLE predisposing to a multi-tumour phenotype , 2014, International journal of oncology.