Iterative Methods for Pricing American Options under the Bates Model

We consider the numerical pricing of American options under the Bates model which adds log-normally distributed jumps for the asset value to the Heston stochastic volatility model. A linear complementarity problem (LCP) is formulated where partial derivatives are discretized using finite di erences and the integral resulting from the jumps is evaluated using simple quadrature. A rapidly converging fixed point iteration is described for the LCP, where each iterate requires the solution of an LCP. These are easily solved using a projected algebraic multigrid (PAMG) method. The numerical experiments demonstrate the e ciency of the proposed approach. Furthermore, they show that the PAMG method leads to better scalability than the projected SOR (PSOR) method when the discretization is refined.

[1]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[2]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[3]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[4]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[5]  G. Meyer,et al.  The Evaluation of American Option Prices Under Stochastic Volatility and Jump-Diffusion Dynamics Using the Method of Lines , 2008 .

[6]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[7]  Jari Toivanen,et al.  Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..

[8]  Jari Toivanen,et al.  A Projected Algebraic Multigrid Method for Linear Complementarity Problems , 2011 .

[9]  Jari Toivanen,et al.  An Iterative Method for Pricing American Options Under Jump-Diffusion Models , 2011 .

[10]  S. Ikonen,et al.  Efficient numerical methods for pricing American options under stochastic volatility , 2008 .

[11]  Angela Kunoth,et al.  B-Spline-Based Monotone Multigrid Methods , 2007, SIAM J. Numer. Anal..

[12]  R. Hoppe Multigrid Algorithms for Variational Inequalities , 1987 .

[13]  Lina von Sydow,et al.  A multigrid preconditioner for an adaptive Black-Scholes solver , 2011 .

[14]  Gabriel Wittum,et al.  On multigrid for anisotropic equations and variational inequalities “Pricing multi-dimensional European and American options” , 2004 .

[15]  Cornelis W. Oosterlee,et al.  Numerical valuation of options with jumps in the underlying , 2005 .

[16]  M. Giles,et al.  Convergence analysis of Crank-Nicolson and Rannacher time-marching , 2006 .

[17]  Jari Toivanen,et al.  Operator splitting methods for pricing American options under stochastic volatility , 2009, Numerische Mathematik.

[18]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[19]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[20]  Rüdiger U. Seydel Tools for Computational Finance , 2002 .

[21]  Jari Toivanen,et al.  Pricing American Options Using LU Decomposition , 2007 .

[22]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[23]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[24]  Frank Cuypers Tools for Computational Finance , 2003 .

[25]  Kazufumi Ito,et al.  Lagrange Multiplier Approach with Optimized Finite Difference Stencils for Pricing American Options under Stochastic Volatility , 2009, SIAM J. Sci. Comput..

[26]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[27]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[28]  Kevin Parrott,et al.  Multigrid for American option pricing with stochastic volatility , 1999 .

[29]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[30]  Cornelis W. Oosterlee,et al.  On multigrid for linear complementarity problems with application to American-style options. , 2003 .

[31]  Jari Toivanen,et al.  COMPONENTWISE SPLITTING METHODS FOR PRICING AMERICAN OPTIONS UNDER STOCHASTIC VOLATILITY , 2007 .

[32]  Jari Toivanen A Componentwise Splitting Method for Pricing American Options Under the Bates Model , 2010 .

[33]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[34]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[35]  A. Brandt,et al.  Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems , 1983 .

[36]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[37]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[38]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[39]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[40]  Lee Sael,et al.  Procedia Computer Science , 2015 .

[41]  Robert A. van de Geijn,et al.  Anatomy of high-performance matrix multiplication , 2008, TOMS.

[42]  Christoph Schwab,et al.  Fast Numerical Solution of Parabolic Integrodifferential Equations with Applications in Finance , 2005, SIAM J. Sci. Comput..