A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations

foraminiferal d 18 O and Mg/Ca suggests that the ratio of magnesium to calcium in the Turonian-Coniacian ocean may have been lower than in the Albian-Cenomanian ocean, perhaps coincident with an ocean 87 Sr/ 86 Sr minimum. The carbon isotopic compositions of distinct marine algal biomarkers were measured in the same sediment samples. The d 13 C values of phytane, combined with foraminiferal d 13 C and inferred temperatures, were used to estimate atmospheric carbon dioxide concentrations through this interval. Estimates of atmospheric CO2 concentrations range between 600 and 2400 ppmv. Within the uncertainty in the various proxies, there is only a weak overall correspondence between higher (lower) tropical temperatures and more (less) atmospheric CO2. The GENESIS climate model underpredicts tropical Atlantic temperatures inferred from ODP Leg 207 foraminiferal d 18 O and Mg/Ca when we specify approximate CO2 concentrations estimated from the biomarker isotopes in the same samples. Possible errors in the temperature and CO2 estimates and possible deficiencies in the model are discussed. The potential for and effects of substantially higher atmospheric methane during Cretaceous anoxic events, perhaps derived from high fluxes from the oxygen minimum zone, are considered in light of recent work that shows a quadratic relation between increased methane flux and atmospheric CH4 concentrations. With 50 ppm CH4, GENESIS sea surface temperatures approximate the minimum upper ocean temperatures inferred from proxy data when CO2 concentrations specified to the model are near those inferred using the phytane d 13 C proxy. However, atmospheric CO2 concentrations of 3500 ppm or more are still required in the model in order to reproduce inferred maximum temperatures.

[1]  S. Whittaker,et al.  Effects of sources and diagenesis on the isotopic and chemical composition of carbon and sulfur in Cretaceous shales , 1990 .

[2]  K. Miller,et al.  Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world , 2003 .

[3]  R. Bidigare,et al.  Controls on the carbon isotopic composition of southern ocean phytoplankton , 1999 .

[4]  C. Yapp,et al.  Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure , 1996 .

[5]  S. Stanley,et al.  Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Klas Lackschewitz,et al.  Proceedings of the Ocean Drilling Program , 2002 .

[7]  D. Lea,et al.  Deconvolving Glacial Ocean Carbonate Chemistry from the Planktonic Foraminifera Carbon Isotope Record , 1999 .

[8]  J. Hayes Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence , 1993 .

[9]  J. Volkman,et al.  Sterols in microorganisms , 2002, Applied Microbiology and Biotechnology.

[10]  J. Hayes,et al.  Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years. , 1994, Paleoceanography.

[11]  Stefan Schouten,et al.  High temperatures in the Late Cretaceous Arctic Ocean , 2004, Nature.

[12]  W. Prell,et al.  Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios , 1995, Nature.

[13]  D. Lea,et al.  Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing , 1999 .

[14]  C. Hemleben,et al.  Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures , 1996 .

[15]  S. J. Brentnall,et al.  Fossil bryophytes as recorders of ancient CO2 levels: Experimental evidence and a Cretaceous case study , 2005 .

[16]  D. Wolf-Gladrow,et al.  A model of photosynthetic 13 c fractionation by marine phytoplankton based on diffusive molecular CO 2 uptake , 2006 .

[17]  Jochen Erbacher,et al.  Proceedings of the Ocean Drilling Program, 207 Initial Reports , 2004 .

[18]  K. Wallmann The geological water cycle and the evolution of marine δ 18O values , 2001 .

[19]  D. Schrag,et al.  On the feedback of stratospheric clouds on polar climate , 2002 .

[20]  R. Robinson,et al.  Geochemical evidence for variations in delivery and deposition of sediment in Pleistocene light–dark color cycles under the Benguela Current Upwelling System , 2002 .

[21]  M. Coffin,et al.  Sequence stratigraphy, structure, and tectonic history of the southwestern Ontong Java Plateau adjacent to the North Solomon Trench and Solomon Islands Arc , 1999 .

[22]  G. Retallack A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles , 2001, Nature.

[23]  R. Howarth,et al.  Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr‐Isotope Curve for 0–509 Ma and Accompanying Look‐up Table for Deriving Numerical Age , 2001, The Journal of Geology.

[24]  K. Grice,et al.  Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: implications for deciphering the carbon isotopic biomarker record , 1998 .

[25]  S. Bernasconi,et al.  Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences on the Demerara Rise, South American margin , 2006 .

[26]  J. Zachos,et al.  Evolution of Early Cenozoic marine temperatures , 1994 .

[27]  R. Schneider,et al.  Alkenone δ13C as a Proxy for PastPCO2 in Surface Waters: Results from the Late Quaternary Angola Current , 1999 .

[28]  R. Zeebe An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes , 1999 .

[29]  S. Stanley,et al.  Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry , 1998 .

[30]  D. Seidov,et al.  Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models [Palaeogeogr. Palaeoclimatol. Palaeoecol. 161 (2000) 295–310] , 2001 .

[31]  E. Boyle,et al.  Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography , 1997 .

[32]  I. Montañez,et al.  A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide , 1999 .

[33]  Y. Rosenthal,et al.  Chemical Hydrography of the South Atlantic During the Last Glacial Maximum: Cd vs. δ13C , 1996 .

[34]  W. G. Mook,et al.  CARBON ISOTOPE FRACTIONATION BETWEEN DISSOLVED BICARBONATE AND GASEOUS CARBON-DIOXIDE , 1974 .

[35]  Morton K. Blaustein Effect of ambient Mg / Ca ratio on Mg fractionation in calcareous marine invertebrates : A record of the oceanic Mg / Ca ratio over the Phanerozoic , 2004 .

[36]  R. Norris,et al.  Extreme Polar Warmth during the Cretaceous Greenhouse? the Paradox of the Late Turonian d18O Record at DSDP Site 511 , 2003 .

[37]  C. Shields,et al.  Late Cretaceous ocean: Coupled simulations with the National Center for Atmospheric Research Climate System Model , 2002 .

[38]  J. Ogg,et al.  Campanian through Eocene magnetostratigraphy of Sites 1257-1261, ODP leg 207, Demerara Rise (western equatorial Atlantic) , 2005 .

[39]  H. Elderfield,et al.  Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios , 2000, Nature.

[40]  R. Weiss Carbon dioxide in water and seawater: the solubility of a non-ideal gas , 1974 .

[41]  D. Gough Solar interior structure and luminosity variations , 1981 .

[42]  D. Lea,et al.  Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation , 2002 .

[43]  P. Tapponnier,et al.  On causal links between flood basalts and continental breakup , 1999 .

[44]  E. Kauffman,et al.  The great transgressions of the Late Cretaceous , 1979, Journal of the Geological Society.

[45]  J. Hayes,et al.  Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. , 1992, Global biogeochemical cycles.

[46]  L. Sloan,et al.  High concentrations of greenhouse gases and polar stratospheric clouds: A possible solution to high-latitude faunal migration at the latest Paleocene thermal maximum , 2000 .

[47]  D. Beerling,et al.  Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches , 2001 .

[48]  R. Norris,et al.  Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511 , 2003 .

[49]  J. Brunt,et al.  Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae) , 2005 .

[50]  K. Taylor,et al.  An overview of results from the Coupled Model Intercomparison Project , 2003 .

[51]  Michael A. Arthur,et al.  Methane-rich Proterozoic atmosphere? , 2003 .

[52]  M. Lomas,et al.  On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian Oceanic anoxic events , 2002 .

[53]  J. Volkman A review of sterol markers for marine and terrigenous organic matter , 1986 .

[54]  John W. Morse,et al.  Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C , 2005 .

[55]  D. Gautier Cretaceous shales from the western interior of North America: sulfur/carbon ratios and sulfur-isotope composition. , 1986 .

[56]  J. Lelieveld,et al.  Climate effects of atmospheric methane , 1993 .

[57]  J. Dickson Fossil Echinoderms As Monitor of the Mg/Ca Ratio of Phanerozoic Oceans , 2002, Science.

[58]  R. Norris,et al.  Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise , 2002 .

[59]  E. Boyle,et al.  Glacial enrichments of authigenic Cd And U in subantarctic sediments: A climatic control on the elements' oceanic budget? , 1995 .

[60]  A. Jahren The biogeochemical consequences of the mid-Cretaceous superplume , 2002 .

[61]  D. Schrag,et al.  High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? , 2000 .

[62]  B. Hönisch,et al.  Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera , 2004 .

[63]  G. Layne,et al.  Application of secondary ion mass spectrometry to the determination of Mg/Ca in rare, delicate, or altered planktonic foraminifera: Examples from the Holocene, Paleogene, and Cretaceous , 2005 .

[64]  J. Erez,et al.  Experimental paleotemperature equation for planktonic foraminifera , 1983 .

[65]  G. Hut Consultants' group meeting on stable isotope reference samples for geochemical and hydrological investigations , 1987 .

[66]  N. Shackleton,et al.  Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281 , 1975 .

[67]  Wolfgang H Berger,et al.  The South Atlantic: Present and Past Circulation , 1996 .

[68]  B. Huber Tropical Paradise at the Cretaceous Poles? , 1998, Science.

[69]  D. Seidov,et al.  Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models , 2000 .

[70]  K. L. Hanson,et al.  Consistent fractionation of 13C in nature and in the laboratory: Growth‐rate effects in some haptophyte algae , 1997, Global biogeochemical cycles.

[71]  K. L. Hanson,et al.  Effect of Phytoplankton Cell Geometry on Carbon Isotopic Fractionation , 1998 .

[72]  R. Summons,et al.  Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. , 1994, Geochimica et cosmochimica acta.

[73]  J. Smith,et al.  Isoprenoid Hydrocarbons in Coal and Petroleum , 1969, Nature.

[74]  R. Norris,et al.  Jiggling the tropical thermostat in the Cretaceous hothouse , 2002 .

[75]  M. German,et al.  The Karbonat-Bombe, a simple device for the determination of the carbonate content in sediments, soils, and other materials , 1971 .

[76]  R. Norris,et al.  Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian) , 2002 .

[77]  E. Barron,et al.  Response of the Mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings , 2001 .

[78]  Stephen A. Macko,et al.  Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2)aq: Theoretical considerations and experimental results , 1995 .

[79]  Gerald Müller,et al.  The 'Karbonat-Bombe', a simple device for the determination of carbonate content in sediment, soils, and other materials , 1971 .

[80]  Cottrell,et al.  Evidence for extreme climatic warmth from late cretaceous arctic vertebrates , 1998, Science.

[81]  D. Lea,et al.  A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca , 2002 .

[82]  Michael A. Arthur,et al.  Miocene evolution of atmospheric carbon dioxide , 1999 .

[83]  L. Hardie Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. , 1996 .

[84]  D. Hodell,et al.  Middle–Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients , 1995 .

[85]  K. Miller,et al.  The Phanerozoic Record of Global Sea-Level Change , 2005, Science.

[86]  H. Strauss,et al.  87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater , 1999 .

[87]  D. Royer Estimating Latest Cretaceous and Tertiary atmospheric CO2 from stromatal indices , 2001 .

[88]  K. L. Hanson,et al.  Erratum: Consistent fractionation of13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae (Global Biogeochemical Cycles (1997) 11:2 (279-292)) , 1999 .

[89]  E. Erba,et al.  Volcanism, CO2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record , 2004, Journal of the Geological Society.

[90]  D. Wolf-Gladrow,et al.  A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake , 1996 .

[91]  A. M. Johnston,et al.  Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources , 1991 .

[92]  I. Fung,et al.  Observational Contrains on the Global Atmospheric Co2 Budget , 1990, Science.

[93]  D. Pirrie,et al.  High latitude palaeotemperature variation: New data from the Thithonian to Eocene of James Ross Island, Antarctica , 1994 .

[94]  K. Peters,et al.  The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments , 1992 .

[95]  R. Berner,et al.  GEOCARB III : A REVISED MODEL OF ATMOSPHERIC CO 2 OVER PHANEROZOIC TIME , 2001 .

[96]  Edward A. Boyle,et al.  Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years : changes in deep ocean circulation and chemical inventories , 1985 .