Maximum likelihood parameter estimation of F-ARIMA processes using the genetic algorithm in the frequency domain

This work aims to treat the parameter estimation problem for fractional-integrated autoregressive moving average (F-ARIMA) processes under external noise. Unlike the conventional approaches from the perspective of the time domain, a maximum likelihood (ML) method is developed in the frequency domain since the power spectrum of an F-ARIMA process is in a very explicit and more simple form. However, maximization of the likelihood function is a highly nonlinear estimation problem. Conventional searching algorithms are likely to converge to local maxima under this situation. Since the genetic algorithm (GA) tends to find the globally optimal solution without being trapped at local maxima, an estimation scheme based on the GA is therefore developed to solve the ML parameter estimation problem for F-ARIMA processes from the frequency domain perspective. In the parameter estimation procedure, stability of the F-ARIMA model is ensured, and convergence to the global optimum of the likelihood function is also guaranteed. Finally, several simulation examples are presented to illustrate the proposed estimation algorithm and exhibit its performance.

[1]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..

[2]  Richard G. Baraniuk,et al.  A Multifractal Wavelet Model with Application to Network Traffic , 1999, IEEE Trans. Inf. Theory.

[3]  A. Adas,et al.  Traffic models in broadband networks , 1997, IEEE Commun. Mag..

[4]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[5]  David R. Brillinger,et al.  Time Series: Data Analysis and Theory. , 1982 .

[6]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[7]  Mohamed A. Deriche,et al.  Signal modeling with filtered discrete fractional noise processes , 1993, IEEE Trans. Signal Process..

[8]  Walter Willinger,et al.  Long-range dependence in variable-bit-rate video traffic , 1995, IEEE Trans. Commun..

[9]  Philip Beaver,et al.  Fractals and Chaos , 1991 .

[10]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[11]  Clive W. J. Granger,et al.  An introduction to long-memory time series models and fractional differencing , 2001 .

[12]  C. L. Karr,et al.  Fuzzy control of pH using genetic algorithms , 1993, IEEE Trans. Fuzzy Syst..

[13]  A. Cohen An Introduction to Probability Theory and Mathematical Statistics , 1979 .

[14]  R. Baraniuk,et al.  A simple statistical analysis of wavelet-based multifractal spectrum estimation , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[15]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  J. Fitzpatrick,et al.  Adaptive search space scaling in digital image registration. , 1989, IEEE transactions on medical imaging.

[17]  Spilios D. Fassois,et al.  Pseudolinear estimation of fractionally integrated ARMA (ARFIMA) models with automotive application , 1999, IEEE Trans. Signal Process..

[18]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[19]  Yoshihiro Yajima,et al.  A CENTRAL LIMIT THEOREM OF FOURIER TRANSFORMS OF STRONGLY DEPENDENT STATIONARY PROCESSES , 1989 .

[20]  Bor-Sen Chen,et al.  Multiscale Wiener filter for the restoration of fractal signals: wavelet filter bank approach , 1994, IEEE Trans. Signal Process..

[21]  Walter Willinger,et al.  On the Self-Similar Nature of Ethernet Traffic ( extended version ) , 1995 .

[22]  M. J. Hicks,et al.  Recursive adaptive filter design using an adaptive genetic algorithm , 1982, ICASSP.

[23]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[24]  George A. Perdikaris Computer Controlled Systems: Theory and Applications , 1991 .

[25]  Roger M. Dufour,et al.  Statistical estimation with 1/f-type prior models: robustness to mismatch and efficient model determination , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[26]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[27]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[28]  Richard G. Baraniuk,et al.  Multiscale queuing analysis of long-range-dependent network traffic , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[29]  Guy A. Dumont,et al.  Genetic algorithms in system identification , 1988, Proceedings IEEE International Symposium on Intelligent Control 1988.

[30]  Jerry M. Mendel,et al.  Lessons in digital estimation theory , 1986 .

[31]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[32]  William A. Sethares,et al.  Nonlinear parameter estimation via the genetic algorithm , 1994, IEEE Trans. Signal Process..

[33]  Roger M. Dufour,et al.  Image restoration with 1/f-type fractal models and statistical estimation of the model parameters , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[34]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[35]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[36]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .