Optic Glomeruli and Their Inputs in Drosophila Share an Organizational Ground Pattern with the Antennal Lobes

Studying the insect visual system provides important data on the basic neural mechanisms underlying visual processing. As in vertebrates, the first step in visual processing in insects is through a series of retinotopic neurons. Recent studies on flies have found that these converge onto assemblies of columnar neurons in the lobula, the axons of which segregate to project to discrete optic glomeruli in the lateral protocerebrum. This arrangement is much like the fly's olfactory system, in which afferents target uniquely identifiable olfactory glomeruli. Here, whole-cell patch recordings show that even though visual primitives are unreliably encoded by single lobula output neurons because of high synaptic noise, they are reliably encoded by the ensemble of outputs. At a glomerulus, local interneurons reliably code visual primitives, as do projection neurons conveying information centrally from the glomerulus. These observations demonstrate that in Drosophila, as in other dipterans, optic glomeruli are involved in further reconstructing the fly's visual world. Optic glomeruli and antennal lobe glomeruli share the same ancestral anatomical and functional ground pattern, enabling reliable responses to be extracted from converging sensory inputs.

[1]  Paul D. Barnett,et al.  Insect Detection of Small Targets Moving in Visual Clutter , 2006, PLoS biology.

[2]  N. Strausfeld,et al.  Cobalt-coupled neurons of a giant fibre system in Diptera , 1983, Journal of neurocytology.

[3]  Michael X. Cohen,et al.  Gamma-band activity in the human superior temporal sulcus during mentalizing from nonverbal social cues. , 2009, Psychophysiology.

[4]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[5]  Active and Passive Axonal Propagation of Non-Spike Signals in the Retina of Calliphora , 2022 .

[6]  A. Aldo Faisal,et al.  Stochastic Simulations on the Reliability of Action Potential Propagation in Thin Axons , 2007, PLoS Comput. Biol..

[7]  M. Heisenberg,et al.  Vision in Drosophila: Genetics of Microbehavior , 2011 .

[8]  N. J. Strausfeld,et al.  The resolution of neuronal assemblies after cobalt injection into neuropil , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  N. Strausfeld,et al.  Visual system of calliphorid flies: Motion‐ and orientation‐sensitive visual interneurons supplying dorsal optic glomeruli , 2007, The Journal of comparative neurology.

[10]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Parallel Direction- and Non-Direction-Sensitive Pathways between the Medulla and Lobula Plate , 1996, The Journal of Neuroscience.

[11]  P. Hiesinger,et al.  Three‐dimensional reconstruction of the antennal lobe in Drosophila melanogaster , 1999, The Journal of comparative neurology.

[12]  Richard Axel,et al.  An Olfactory Sensory Map in the Fly Brain , 2000, Cell.

[13]  F. Zettler,et al.  Active and passive axonal propagation of non-spike signals in the retina ofCalliphora , 1973, Journal of comparative physiology.

[14]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[15]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[16]  Huaiyu Gu,et al.  Whole cell recordings from brain of adult Drosophila. , 2007, Journal of visualized experiments : JoVE.

[17]  Irina Sinakevitch,et al.  Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes , 2007, Developmental neurobiology.

[18]  N. Strausfeld,et al.  Retinotopic pathways providing motion‐selective information to the lobula from peripheral elementary motion‐detecting circuits , 2003, The Journal of comparative neurology.

[19]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[20]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[21]  N. Strausfeld,et al.  Visual system of calliphorid flies: Organization of optic glomeruli and their lobula complex efferents , 2007, The Journal of comparative neurology.

[22]  N. Strausfeld,et al.  Small‐field neurons associated with oculomotor control in muscoid flies: Cellular organization in the lobula plate , 1992, The Journal of comparative neurology.

[23]  Kei Ito,et al.  Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula‐specific pathways , 2006, The Journal of comparative neurology.

[24]  Karel Svoboda,et al.  Stereotyped Odor-Evoked Activity in the Mushroom Body of Drosophila Revealed by Green Fluorescent Protein-Based Ca2+ Imaging , 2004, The Journal of Neuroscience.

[25]  Nicholas J. Strausfeld,et al.  The dipteran ‘Giant fibre’ pathway: neurons and signals , 1986, Journal of Comparative Physiology A.

[26]  Matti Järvilehto,et al.  Postsynaptic potentials from a single monopolar neuron of the ganglion opticum I of the blowfly Calliphora , 1970, Zeitschrift für vergleichende Physiologie.

[27]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[28]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[29]  John B. Thomas,et al.  The morphology of the cervical giant fiber neuron ofDrosophila , 1981, Brain Research.

[30]  N. Strausfeld The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[31]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[32]  D Marr,et al.  Early processing of visual information. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[34]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[35]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[36]  Glenn C. Turner,et al.  Olfactory representations by Drosophila mushroom body neurons. , 2008, Journal of neurophysiology.

[37]  Rachel I. Wilson,et al.  Neural and behavioral mechanisms of olfactory perception , 2008, Current Opinion in Neurobiology.

[38]  Gilles Laurent,et al.  Olfactory network dynamics and the coding of multidimensional signals , 2002, Nature Reviews Neuroscience.

[39]  Nicholas J. Strausfeld,et al.  Arthropod Brains: Evolution, Functional Elegance, and Historical Significance , 2012 .

[40]  M. Burrows The Neurobiology of an Insect Brain , 1996 .

[41]  Cole Gilbert,et al.  Small‐field neurons associated with oculomotor and optomotor control in muscoid flies: Functional organization , 1992, The Journal of comparative neurology.

[42]  A. Chess,et al.  Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe , 2000, Nature Neuroscience.

[43]  Alexander Borst,et al.  The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties , 1996, Journal of Computational Neuroscience.

[44]  J. Sanes,et al.  Design Principles of Insect and Vertebrate Visual Systems , 2010, Neuron.

[45]  N. Strausfeld,et al.  Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.