Uphill diffusion in ternary Ni–Re–Ru alloys at 1000 and 1100 °C

Abstract The rates of interdiffusion of Re and Ru at 1000 and 1100 °C in binary diffusion couples with single phase face centred cubic (fcc) microstructures have been characterised and compared to their respective rates in the presence of one another in ternary Ni–Re–Ru couples. The diffusivity of Re in Ni at 1000 °C (6.12 × 10 18  m 2 /s) and at 1100 °C (9.31 × 10 −17  m 2 /s) was found to be an order of magnitude slower than that of Ru at both temperatures (5.01 × 10 −17 and 4.71 × 10 −16  m 2 /s at 1000 and 1100 °C, respectively). The interdiffusion coefficient of Re was found to be unaffected by the presence of Ru in the ternary Ni–Re–Ru alloy (6.08 × 10 −18 and 9.16 × 10 −17  m 2 /s at 1000 and 1100 °C, respectively). That of Ru was modestly reduced by the presence of Re to 3.45 × 10 −17 and 2.36 × 10 −16  m 2 /s at 1000 and 1100 °C, respectively. Uphill diffusion of Ru was evident in the diffusion zone of the Ni–Re–Ru/Ni–Ru couples under all annealing conditions despite the absence of a Ru concentration gradient. The uphill diffusion of Ru was opposite to and of the same order of magnitude of Re, the principal diffusing element. This suggests Re lowers the chemical potential of Ru thus promoting uphill Ru diffusion to equilibrate the chemical potential gradient. Lowering of the chemical potential of Ru by Re is consistent with thermodynamically stable Re–Ru bonding which may contribute to the enhanced microstructural stability and high temperature creep performance documented in Ru-bearing Ni-base single crystal superalloys.

[1]  Paul Shewmon,et al.  Diffusion in Solids , 2016 .

[2]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[3]  A. F. Giamei,et al.  Rhenium additions to a Ni-base superalloy: Effects on microstructure , 1985 .

[4]  R. Reed,et al.  On the diffusion of aluminium and titanium in the Ni-rich Ni–Al–Ti system between 900 and 1200°C , 2001 .

[5]  F. D. Broeder,et al.  A general simplification and improvement of the matano-boltzmann method in the determination of the interdiffusion coefficients in binary systems , 1969 .

[6]  R. Reed,et al.  Interdiffusion of the platinum-group metals in nickel at elevated temperatures , 2003 .

[7]  T. Yokokawa,et al.  Partitioning behavior of platinum group metals on the γ and γ' phases of Ni-base superalloys at high temperatures , 2003 .

[8]  T. Pollock,et al.  Phase instabilities and carbon additions in single-crystal nickel-base superalloys , 2003 .

[9]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[10]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[11]  Ludwig Boltzmann,et al.  Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten , 1894 .

[12]  R. Reed,et al.  Interdiffusion of Niobium and Molybdenum in Nickel between 900 -1300 °C , 2005 .

[13]  M. Glicksman Diffusion in solids : field theory, solid-state principles, applications , 2000 .

[14]  R. Reed,et al.  Interdiffusion in the face-centred cubic phase of the Ni–Re, Ni–Ta and Ni–W systems between 900 and 1300°C , 2000 .

[15]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[16]  D. Dunand,et al.  Diffusion in the nickel-rhenium system , 1994 .

[17]  A. Argon,et al.  Creep resistance of CMSX-3 nickel base superalloy single crystals , 1992 .

[18]  A. Smigelskas Zinc diffusion in alpha brass , 1947 .

[19]  J. S. Kirkaldy,et al.  DIFFUSION IN MULTICOMPONENT METALLIC SYSTEMS: VII. SOLUTIONS OF THE MULTICOMPONENT DIFFUSION EQUATIONS WITH VARIABLE COEFFICIENTS , 1963 .

[20]  L. Onsager,et al.  THEORIES AND PROBLEMS OF LIQUID DIFFUSION , 1945, Annals of the New York Academy of Sciences.

[21]  D. Whittle,et al.  The measurement of diffusion coefficients in ternary systems , 1974 .

[22]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .