Effect of Grain Boundary Atomic Density and Temperature on <110> Symmetric Tilt Grain Boundaries in Tungsten: An Atomistic Study

[1]  Q. Fang,et al.  Towards the dependence of radiation damage on the grain boundary character and grain size in tungsten: A combined study of molecular statics and rate theory , 2022, Journal of Nuclear Materials.

[2]  R. Rudd,et al.  Nucleation of Grain Boundary Phases. , 2021, Physical review letters.

[3]  Shaoqing Wang,et al.  Molecular dynamics investigation on tilt grain boundary energies of beta-titanium and tungsten at high temperature , 2021, Materials Research Express.

[4]  P. Kumam,et al.  Grain Boundary Energy Function for α Iron , 2021, SSRN Electronic Journal.

[5]  A. Parashar,et al.  Atomistic simulations to study point defect dynamics in bi-crystalline niobium , 2020 .

[6]  K. Dong,et al.  Solid−solid phase transition of tungsten induced by high pressure: A molecular dynamics simulation , 2020 .

[7]  L. Qi,et al.  Grain boundary structure search by using an evolutionary algorithm with effective mutation methods , 2020 .

[8]  Xiaobin Tang,et al.  Effects of grain boundary structures on primary radiation damage and radiation-induced segregation in austenitic stainless steel , 2020 .

[9]  M. Harmer,et al.  Grain Boundary Complexion Transitions , 2020 .

[10]  R. Rudd,et al.  Observations of grain boundary phase transformations in an elemental metal , 2020, Nature.

[11]  L. Burakovsky,et al.  Topological Equivalence of the Phase Diagrams of Molybdenum and Tungsten , 2020 .

[12]  K. Hattar,et al.  Interplay Between Grain Boundaries and Radiation Damage , 2019, JOM.

[13]  Idan Segev,et al.  Hydrogen blister formation in single crystal and polycrystalline tungsten irradiated by MeV protons , 2019, Journal of Nuclear Materials.

[14]  M. Nastasi,et al.  Radiation damage in nanostructured materials , 2018, Progress in Materials Science.

[15]  J. Marian,et al.  Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects , 2018, Acta Materialia.

[16]  W. Setyawan,et al.  Grain boundary phases in bcc metals. , 2017, Nanoscale.

[17]  Qiang Zhu,et al.  Predicting phase behavior of grain boundaries with evolutionary search and machine learning , 2017, Nature Communications.

[18]  G. Lu,et al.  Migration and nucleation of helium atoms at (110) twist grain boundaries in tungsten , 2017 .

[19]  K. Barmak,et al.  Atomistic simulations of grain boundary energies in tungsten , 2017 .

[20]  P. Puschnig,et al.  Ab initio calculations of grain boundaries in bcc metals , 2016 .

[21]  S. Feghhi,et al.  Effects of atomic grain boundary structures on primary radiation damage in α-Fe , 2015 .

[22]  M. Demkowicz,et al.  Defect-interface interactions , 2015 .

[23]  D. Morgan,et al.  Grain boundary character dependence of radiation-induced segregation in a model Ni–Cr alloy , 2015 .

[24]  Ying Yang,et al.  Defect Sink Characteristics of Specific Grain Boundary Types in 304 Stainless Steels Under High Dose Neutron Environments , 2015 .

[25]  M. Demkowicz,et al.  Non-coherent Cu grain boundaries driven by continuous vacancy loading , 2015, Journal of Materials Science.

[26]  Z. Zeng,et al.  Primary radiation damage near grain boundary in bcc tungsten by molecular dynamics simulations , 2015 .

[27]  S. Feghhi,et al.  An energetic and kinetic investigation of the role of different atomic grain boundaries in healing radiation damage in nickel , 2015, Journal of Materials Science.

[28]  Peng Wang,et al.  Deuterium retention in tungsten films after different heat treatments , 2015 .

[29]  H. Fraser,et al.  Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys , 2014 .

[30]  Steven J. Zinkle,et al.  Designing Radiation Resistance in Materials for Fusion Energy , 2014 .

[31]  T. Qiu,et al.  In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments , 2014, Scientific Reports.

[32]  W. Setyawan,et al.  Ab initio study of H, He, Li and Be impurity effect in tungsten Σ3{1 1 2} and Σ27{5 5 2} grain boundaries , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  Blas P. Uberuaga,et al.  Radiation damage tolerant nanomaterials , 2013 .

[34]  K. Barmak,et al.  The five-parameter grain boundary character distribution of nanocrystalline tungsten , 2013 .

[35]  M. Balden,et al.  3D-microscopy of hydrogen in tungsten , 2013 .

[36]  G. Rohrer,et al.  The relative grain boundary area and energy distributions in a ferritic steel determined from three-dimensional electron backscatter diffraction maps , 2013 .

[37]  David L. Olmsted,et al.  Structural phase transformations in metallic grain boundaries , 2012, Nature Communications.

[38]  Amit Misra,et al.  Effect of grain boundary character on sink efficiency , 2012 .

[39]  A. Voter,et al.  Role of atomic structure on grain boundary-defect interactions in Cu , 2012 .

[40]  W. Setyawan,et al.  Effects of transition metals on the grain boundary cohesion in tungsten , 2012 .

[41]  A. Stukowski Structure identification methods for atomistic simulations of crystalline materials , 2012, 1202.5005.

[42]  Xin Sun,et al.  Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α -Fe , 2012 .

[43]  M. Finnis,et al.  A genetic algorithm for predicting the structures of interfaces in multicomponent systems. , 2010, Nature materials.

[44]  G. Ackland Controlling Radiation Damage , 2010, Science.

[45]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[46]  K. Kaski,et al.  Molecular dynamics simulations of temperature-induced structural transitions at twist boundaries in silicon , 2007 .

[47]  H. Fraser,et al.  Crystallographic and morphological relationships between β phase and the Widmanstätten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy , 2007 .

[48]  P. Sardain,et al.  Power plant conceptual studies in Europe , 2007 .

[49]  V. Ksenofontov,et al.  Observation of the intergrain hexagonal ω structure in tungsten , 2007 .

[50]  K. Kaski,et al.  Order and structural units in simulations of twist grain boundaries in silicon at absolute zero , 2006 .

[51]  P D Haynes,et al.  Are the structures of twist grain boundaries in silicon ordered at 0 K? , 2006, Physical review letters.

[52]  D. P. Luigi,et al.  DEMO and fusion power plant conceptual studies in Europe , 2006 .

[53]  J. Bilde-Sørensen,et al.  Bubble formation at grain boundaries in helium implanted copper , 2004 .

[54]  A. Petford-Long,et al.  Atomic scale structure of sputtered metal multilayers , 2001 .

[55]  J. W. Davis,et al.  Assessment of tungsten for use in the ITER plasma facing components 1 #AC-3013 with Sandia National Laboratories. 1 , 1998 .

[56]  Phillpot Simulation of solids at nonzero temperatures in the grand-canonical ensemble. , 1994, Physical review. B, Condensed matter.

[57]  S. Phillpot Reconstruction of grain boundaries in copper and gold by simulation , 1994 .

[58]  Hannes Jónsson,et al.  Systematic analysis of local atomic structure combined with 3D computer graphics , 1994 .

[59]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[60]  S. Phillpot,et al.  Simulated quenching to the zero‐temperature limit of the grand‐canonical ensemble , 1992 .

[61]  D. Wolf Correlation between the energy and structure of grain boundaries in b.c.c. metals. II. Symmetrical tilt boundaries , 1990 .

[62]  S. Zinkle,et al.  Void swelling and defect cluster formation in reactor-irradiated copper☆ , 1989 .

[63]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[64]  V. Vítek,et al.  MULTIPLICITY OF GRAIN BOUNDARY STRUCTURES : VACANCIES IN BOUNDARIES AND TRANSFORMATIONS OF THE BOUNDARY STRUCTURE , 1985 .

[65]  W. Pitsch The martensite transformation in thin foils of iron-nitrogen alloys , 1959 .

[66]  W. G. Burgers On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium , 1934 .