Real-time observation on surface diffusion and molecular orientations for phthalocyanine thin films at nanometer spacial resolution

[1]  B. Holland,et al.  Arrangement of metal phthalocyanines on Ge (0 0 1) 2 × 1 surfaces , 2008 .

[2]  I. Shimoyama,et al.  Chemical-state-selective observations on Si-SiOx at nanometer scale by photoelectron emission microscopy combined with synchrotron radiation , 2008 .

[3]  A. Cafolla,et al.  Ordering of TtertBuCuPc on Si substrates studied by NEXAFS and VB XPS using synchrotron radiation , 2008 .

[4]  Y. Baba,et al.  Effect of substrates on the molecular orientation of silicon phthalocyanine dichloride thin films , 2007 .

[5]  K. Seki,et al.  Angle resolved UV photoelectron spectra of titanyl phthalocynine monolayer film on graphite , 2007 .

[6]  M. Knupfer,et al.  Molecular orientation of substituted phthalocyanines: Influence of the substrate roughness , 2006 .

[7]  G. Schönhense,et al.  Nondestructive full-field imaging XANES-PEEM analysis of cosmic grains , 2006 .

[8]  Yi Luo,et al.  The electronic structure of iron phthalocyanine probed by photoelectron and x-ray absorption spectroscopies and density functional theory calculations. , 2006, The Journal of chemical physics.

[9]  M. Casu,et al.  Growth mode and molecular orientation of phthalocyanine molecules on metal single crystal substrates: A NEXAFS and XPS study , 2006 .

[10]  D. Evans,et al.  Soft X-ray photoelectron spectroscopy of metal-phthalocyanines on the (001) surface of GaAs and Ge , 2006 .

[11]  K. Kanai,et al.  Molecular orientation of F16ZnPc deposited on Au and Mg substrates studied by NEXAFS and IRRAS , 2005 .

[12]  Hirohiko Fukagawa,et al.  Photoelectron fine structures of uppermost valence band for well-characterized ClAl-phthalocyanine ultrathin film: UPS and MAES study , 2004 .

[13]  D. Evans,et al.  Growth and morphology of SnPc films on the S-GaAs(0 0 1) surface: a combined XPS, AFM and NEXAFS study , 2004 .

[14]  M. Betti,et al.  Copper-phthalocyanine ultra thin films grown onto Al(1 0 0) surface investigated by synchrotron radiation , 2004 .

[15]  D. Schlettwein,et al.  Organic n-channels of substituted phthalocyanine thin films grown on smooth insulator surfaces for organic field effect transistors applications , 2004 .

[16]  M. Girasole,et al.  Spectromicroscope for the PHotoelectron Imaging of Nanostructures with X-rays (SPHINX): performance in biology, medicine and geology. , 2004, Ultramicroscopy.

[17]  Dietrich R. T. Zahn,et al.  Synchrotron radiation studies of inorganic–organic semiconductor interfaces , 2003 .

[18]  D. Schmeißer,et al.  PEEM—a spectromicroscopic tool for mc-Si surface evaluation , 2002 .

[19]  M. Knupfer,et al.  Order on disorder: Copper phthalocyanine thin films on technical substrates , 2001 .

[20]  K. Seki,et al.  Structure of copper- and H2-phthalocyanine thin films on MoS2 studied by angle-resolved ultraviolet photoelectron spectroscopy and low energy electron diffraction , 1999 .

[21]  K. Roberts,et al.  Application of polarised NEXAFS spectroscopy to the structural characterisation of condensed molecular surfaces and interfaces , 1999 .

[22]  Y. Azuma,et al.  Characterization of thin films of chloroaluminum phthalocyanine on MoS2: HREELS, LEET and PIES study , 1998 .

[23]  G. Fecher,et al.  Chemical microimaging and microspectroscopy of surfaces with a photoemission microscope , 1997 .

[24]  G. Schönhense,et al.  Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity , 1997 .

[25]  S. Tokito,et al.  Organic/inorganic superlattices with ordered organic layers , 1995 .

[26]  M. Sacchi,et al.  Copper phthalocyanine on Si(111)-7 × 7 and Si(001)-2 × 1 surfaces: an X-ray photoemission spectroscopy and synchrotron X-ray absorption spectroscopy study , 1994 .

[27]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000 eV range , 1991 .

[28]  M. Rocco,et al.  Unoccupied electronic structure of phthalocyanine films , 1990 .

[29]  G. Ertl,et al.  Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum , 1990, Nature.

[30]  T. Inabe,et al.  Cofacial assembly of partially oxidized metallamacrocycles as an approach to controlling lattice architecture in low-dimensional molecular solids. Chemical and architectural properties of the "face-to-face" polymers [M(phthalocyaninato)O]n, where M = Si, Ge, and Sn , 1983 .

[31]  E. Bauer Epitaxy of metals on metals , 1982 .