3.3 Microwave Remote Sensing and Surface Characterization

The scientific study of landforms and the processes that shape them have benefited tremendously from the rapid progress in remote sensing and computer technologies. Microwave sensors have the ability to inform geomorphological studies at length scales that range from planetary scales of thousands of kilometers to micro-topography of surfaces at the centimeter scale. This tremendous range of applicability of microwave sensors is a result of the variety of sensor types and the large frequency range over which these sensors operate. Microwave sensors, operating from both airborne and space-borne platforms, have had a profound influence on our understanding of landforms and the processes that shaped them. In addition to their standalone intrinsic value to geomorphological studies, these sensors can be combined synergistically with other sensor data (e.g., light detection and ranging (LiDAR), optical, or hyperspectral data). This chapter focuses on the basic theory of sensor operation and selected applications in geomorphology.

[1]  Peter G. Ford,et al.  Venus topography and kilometer‐scale slopes , 1992 .

[2]  Richard M. Goldstein,et al.  Rapid subsidence over oil fields measured by SAR interferometry , 1998 .

[3]  David J. Harding,et al.  SRTM C-band and ICESat Laser Altimetry Elevation Comparisons as a Function of Tree Cover and Relief , 2006 .

[4]  Comparison of Long Valley TOPSAR Data with Kinematic GPS Survey Measurements , 1994 .

[5]  Didier Massonnet,et al.  Atmospheric Propagation heterogeneities revealed by ERS‐1 interferometry , 1996 .

[6]  L. Hess,et al.  Radar detection of flooding beneath the forest canopy - A review , 1990 .

[7]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[8]  Howard A. Zebker,et al.  Titan's surface from reconciled Cassini microwave reflectivity and emissivity observations , 2008 .

[9]  Søren Nørvang Madsen,et al.  Topographic mapping using radar interferometry: processing techniques , 1993, IEEE Trans. Geosci. Remote. Sens..

[10]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[11]  Franz Leberl,et al.  Radargrammetric image processing , 1990 .

[12]  Howard A. Zebker,et al.  Remote Sensing of Volcano Surface and Internal Processes Using Radar Interferometry , 2013 .

[13]  S. Cloude,et al.  POLARIMETRIC OPTIMISATION IN RADAR INTERFEROMETRY , 1997 .

[14]  Harold Mott,et al.  Remote Sensing with Polarimetric Radar , 2007 .

[15]  P. Rosen,et al.  Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements , 1996 .

[16]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[17]  J. Roering,et al.  Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport , 2009 .

[18]  John F. McCauley,et al.  The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt , 1997 .

[19]  A. Ferretti,et al.  Permanent scatterer InSAR reveals seasonal and long‐term aquifer‐system response to groundwater pumping and artificial recharge , 2008 .

[20]  Laurence C. Smith,et al.  Emerging Applications of Interferometric Synthetic Aperture Radar (InSAR) in Geomorphology and Hydrology , 2002 .

[21]  Howard Zebker,et al.  Polarisation: Applications in Remote Sensing , 2010 .

[22]  Joy A. Crisp,et al.  Remote Sensing of Active Volcanism , 2000 .

[23]  Scott Hensley,et al.  A combined methodology for SAR interferometric and stereometric error modeling , 2009, 2009 IEEE Radar Conference.

[24]  S. Hensley,et al.  First P-band results using the GeoSAR mapping system , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[25]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[26]  Anny Cazenave,et al.  Present-day sea-level change: A review , 2006 .

[27]  C. Robinson Application of satellite radar data suggest that the Kharga Depression in south-western Egypt is a fracture rock aquifer , 2002 .

[28]  Tom G. Farr,et al.  Microtopographic evolution of lava flows at Cima volcanic field, Mojave Desert, California , 1992 .

[29]  Scott Hensley,et al.  First deformation results using the NASA/JPL UAVSAR instrument , 2009, 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar.

[30]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[31]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995 .

[32]  Søren Nørvang Madsen,et al.  Analysis and evaluation of the NASA/JPL TOPSAR across-track interferometric SAR system , 1995 .

[33]  Zhong Lu,et al.  Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations , 2006 .

[34]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[35]  Charles Werner,et al.  Accuracy of topographic maps derived from ERS-1 interferometric radar , 1994, IEEE Trans. Geosci. Remote. Sens..

[36]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[37]  E. Rodríguez,et al.  A Global Assessment of the SRTM Performance , 2006 .

[38]  Ralph Lorenz,et al.  Size and Shape of Saturn's Moon Titan , 2009, Science.

[39]  Zhong Lu,et al.  Transient volcano deformation sources imaged with interferometric synthetic aperture radar: Application to Seguam Island, Alaska , 2004 .

[40]  Richard M. Goldstein,et al.  Atmospheric limitations to repeat‐track radar interferometry , 1995 .

[41]  Chris Varekamp,et al.  Observation of tropical rain forest trees by airborne high-resolution interferometric radar , 2000, IEEE Trans. Geosci. Remote. Sens..

[42]  R. C. Ghail,et al.  Topographic constraints on impact crater morphology on Venus from high‐resolution stereo synthetic aperture radar digital elevation models , 2006 .

[43]  Paul A. Rosen,et al.  Surface Ruptures and Building Damage of the 2003 Bam, Iran, Earthquake Mapped by Satellite Synthetic Aperture Radar Interferometric Correlation , 2005 .

[44]  Charles Elachi,et al.  Spaceborne and airborne imaging radar observations of sand dunes , 1981 .

[45]  Sang-Ho Yun,et al.  Lunar topographic mapping using a new high resolution mode for the GSSR radar , 2010, 2010 IEEE Radar Conference.

[46]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[47]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[48]  R. Kirk,et al.  Determining Titan surface topography from Cassini SAR data , 2009 .

[49]  T. Farr,et al.  Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun Mountains, China , 1996 .

[50]  J. Bryan Blair,et al.  Validation of SRTM Elevations Over Vegetated and Non-vegetated Terrain Using Medium-Footprint Lidar , 2006 .

[51]  Bob E. Schutz,et al.  Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2 , 1994 .

[52]  Hugh Griffiths,et al.  Interferometric synthetic aperture radar , 1995 .

[53]  J. Swenson,et al.  A comparison of lidar, radar, and field measurements of canopy height in pine and hardwood forests of southeastern North America , 2009 .