Windows with switchable electrochromic glazings are potentially useful for regulating solar input to building interiors. In this article, we describe the structure and operation of a proposed solid-state electrochromic glazing based on crystalline LixWO3 (c-LiXWO3) and a low coloration efficiency counter electrode material such as amorphous Nb2O5 (a-Nb2O5). The importance of reversibility in electrochromic glazing operation is emphasized, and optical switching experiments that demonstrate reversible lithium insertion/extraction in c-LixW03, a-LixWO3, and a-LixNb2O5 are described. Additional optical switching experiments in tandem electrochromic cells comprised of c-LixWO3/a-Nb2O5 and a-LixWO3/a-Nb2O5 demonstrated the proposed design, indicating reversible optical switching over 500 and 200 complete cycles, respectively, without degradation. Optical data on the evolution of reflective and absorp-tive modulation in c-LixWO3 are presented and solar attenuation results are used to demon-strate the advantage of using crystalline electrochromics to conserve daylighting during electrochromic window operation.