Toward a robust normalized magnetic paleointensity method applied to meteorites

Abstract We propose a new paleointensity method based on normalization by isothermal remanent magnetization derivative vs. alternating field (REM′ method). It provides an estimate of the absolute paleointensity with an uncertainty of about a factor two. Contrary to methods using normalization by total isothermal remanent magnetization or anhysteretic magnetization, it is applicable to multicomponent magnetizations. Artificial or natural isothermal remanent magnetizations can be recognized, and relaxation of natural remanent magnetization can be taken into account. It is applicable for magnetizations carried by magnetite, FeNi alloys and pyrrhotite. The REM′ method is of particular interest to estimate paleointensities in meteorites, as these materials are often characterized by complex multicomponent magnetization of various origins (impact magnetization, thermoremanence, isothermal remanent magnetization) and metastable magnetic minerals not suitable for Thellier experiments. However, like other paleointensity methods, the REM′ method underestimates the true paleointensity for meteorite samples with magnetizations that are heterogeneous on spatial scales below the sampling scale. For L ordinary chondrites, an upper limit of 1 μT is proposed for the paleofield. Tentative paleofield estimates in the 0.05–0.5 μT range are proposed for LL ordinary chondrites, which is much lower than previous results. The first paleofield estimates for Rumuruti chondrites indicate the presence of magnetic fields around 6 μT during the last major impact on their parent body. Aubrites and HED achondrites paleofields of at least 10 μT may suggest the existence of a dynamo field during the cooling of their parent body. Results from Martian meteorites are scattered between 1 and 24 μT and may represent the crustal magnetic field of the planet after dynamo shutdown. Carbonaceous chondrites provide contrasting results, with possible evidence of strong field (mT) processes that clearly require additional studies.

[1]  S. Morden The anomalous demagnetization behaviour of chondritic meteorites , 1992 .

[2]  A. Menyeh,et al.  The magnetization process in monoclinic pyrrhotite (Fe7S8) particles containing few domains , 1991 .

[3]  P. Wasilewski,et al.  Shock magnetism in fine particle iron , 2000 .

[4]  G. Morfill,et al.  Chondrule formation by lightning in the Protosolar Nebula , 1998 .

[5]  A. Menyeh,et al.  Thermoremanent magnetization in monodomain monoclinic pyrrhotite Fe7S8 , 1996 .

[6]  M. Westphal Natural remanent magnetization, thermoremanent magnetization and reliability of palaeointensity determinations on H chondrites , 1986 .

[7]  G. Newton,et al.  Hypervelocity cratering and impact magnetisation of basalt , 1977, Nature.

[8]  T. Nagata Meteorite Magnetism and the Early Solar System Magnetic Fields (a Review) , 1979 .

[9]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[10]  E. Scott,et al.  Paleomagnetic record of Martian meteorite ALH84001 , 2003 .

[11]  Mioara Mandea,et al.  Crustal magnetic field of Mars , 2004 .

[12]  A. Brecher Textural remanence: A new model of lunar rock magnetism , 1975 .

[13]  M. Acuna,et al.  443 Eros: Problems with the meteorite magnetism record in attempting an asteroid match , 2002 .

[14]  J. Mattei,et al.  Magnetic transition at 30-34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks , 1990 .

[15]  A. Rubin,et al.  The compositional classification of chondrites: VII. The R chondrite group , 1996 .

[16]  J. Shaw,et al.  Investigating the ancient Martian magnetic field using microwaves , 2001 .

[17]  D. Donahue,et al.  Carbon‐14 terrestrial ages and weathering of 27 meteorites from the southern high plains and adjacent areas (USA) , 1993 .

[18]  S. Cisowski Remanent magnetic properties of unbrecciated eucrites , 1991 .

[19]  R. Clayton,et al.  Acfer 217‐A new member of the Rumuruti chondrite group (R) , 1994 .

[20]  V. Sautter,et al.  Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on Martian magnetism , 2001 .

[21]  L. Hood,et al.  High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars , 2003 .

[22]  W. Williams,et al.  Cooling rate effects in the magnetization of single-domain grains. , 1988 .

[23]  P. Wasilewski,et al.  Aspects of the validation of magnetic remanence in meteorites , 2000 .

[24]  S. Cisowski,et al.  NRM: IRM(S) demagnetization plots; An aid to the interpretation of natural remanent magnetization , 1988 .

[25]  C. Sonett Evidence for a primordial magnetic field during the meteorite parent body era , 1978 .

[26]  M. Funaki,et al.  Matching Martian crustal magnetization and magnetic properties of Martian meteorites , 2005 .

[27]  Tomas Kohout,et al.  Magnetic classification of stony meteorites: 1. Ordinary chondrites , 2003 .

[28]  P. Rochette,et al.  Magnetic properties of a freshly fallen LL ordinary chondrite: the Bensour meteorite , 2003 .

[29]  R. L. Hartstra A comparative study of the ARM and Isr of some natural magnetites of MD and PSD grain size , 1982 .

[30]  D. Strangway,et al.  The primordial magnetic field preserved in chondrules of the Allende meteorite , 1978 .

[31]  S. Cisowski,et al.  Lunar paleointensities via the IRMs normalization method and the early magnetic history of the moon. [saturation remanence] , 1986 .

[32]  W. Hartmann,et al.  Origin of the Moon , 1986 .

[33]  D. Collinson,et al.  The implications of the magnetism of ordinary chondrite meteorites , 1992 .

[34]  E. E. Larson,et al.  Thermomagnetic analysis of meteorites, 2. C2 chondrites , 1974 .

[35]  P. Wasilewski Shock-loading meteoritic b.c.c. metal above the pressure transition - Remanent-magnetization stability and microstructure , 1976 .

[36]  M. Fuhrman,et al.  The magnetic effects of brecciation and shock in meteorites: I. The Ll-chondrites , 1977 .

[37]  S. Cisowski Magnetic studies on Shergotty and other SNC meteorites , 1986 .

[38]  M. Funaki,et al.  Magnetic properties of tetrataenite-rich stony meteorites , 1982 .

[39]  W. Lowrie,et al.  On the alternating field demagnetization characteristics of multidomain thermoremanent magnetization in magnetite , 1971 .

[40]  M. Perrin,et al.  Palaeointensity results from Ethiopian basalts: implications for the Oligocene geomagnetic field strength , 1999 .

[41]  Lisa Tauxe,et al.  Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice , 1993 .

[42]  R. Ash,et al.  A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars , 1996, Nature.

[43]  M. Funaki,et al.  Natural Remanent Magnetizations of Chondrules, Metallic Grains and Matrix of an Antarctic Chondrite, ALH-769 , 1981 .

[44]  L. E. Nyquist,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[45]  J P Wikswo,et al.  A low temperature transfer of ALH84001 from Mars to Earth. , 2000, Science.

[46]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[47]  D. Collinson,et al.  Magnetic properties of howardite, eucrite and diogenite (HED) meteorites: Ancient magnetizing fields and meteorite evolution , 1994 .

[48]  M. Spector,et al.  DNA Ordering on a Lipid Membrane , 1997, Science.

[49]  F. D. Stacey,et al.  Thermomagnetic properties, natural magnetic moments, and magnetic anisotropies of some chondritic meteorites , 1961 .

[50]  H. McSween,et al.  Pyroxene thermobarometry in LL-group chondrites and implications for parent body metamorphism , 1989 .

[51]  A. Brecher,et al.  Paleomagnetic systematics of ordinary chondrites , 1975 .

[52]  G. Kletetschka,et al.  Magnetic remanence in the Murchison meteorite , 2003 .

[53]  Joseph L. Kirschvink,et al.  Paleomagnetic Evidence of a Low-Temperature Origin of Carbonate in the Martian Meteorite ALH84001 , 1997, Science.

[54]  N. Sugiura Magnetic properties and remanent magnetization of stony meteorites. , 1977 .

[55]  Joseph L. Kirschvink,et al.  Records of an ancient Martian magnetic field in ALH84001 , 2001 .

[56]  S. Cisowski Magnetism of meteorites. , 1987 .

[57]  J. Vallée Astral magnetic fields—as observed in starforming nurseries, in stars, and in the Solar system , 2003 .

[58]  P. Rochette,et al.  Inter-laboratory calibration of low-field magnetic and anhysteretic susceptibility measurements , 2003 .

[59]  A. Rubin Postshock annealing and postannealing shock in equilibrated ordinary chondrites: implications for the thermal and shock histories of chondritic asteroids , 2004 .

[60]  E. Scott,et al.  Shock metamorphism of carbonaceous chondrites , 1991 .

[61]  D. Strangway,et al.  Magnetic fields of the solar nebula as recorded in chondrules from the Allende meteorite , 1979 .

[62]  P. Rochette,et al.  Estimating peak currents at ground lightning impacts using remanent magnetization , 2002 .

[63]  P. Rochette,et al.  A magnetic susceptibility database for stony meteorites , 2001 .