Top quark electroweak couplings at future lepton colliders

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  V. M. Ghete,et al.  Search for excited leptons in ℓℓγ final states in proton-proton collisions at s=13$$ \sqrt{\mathrm{s}}=13 $$ TeV , 2018 .

[3]  W. Kilian,et al.  NLO QCD predictions for off-shell tt¯$$ t\overline{t} $$ and tt¯H$$ t\overline{t}H $$ production and decay at a linear collider , 2016, 1609.03390.

[4]  C. Englert,et al.  Giving top quark effective operators a boost , 2016, 1607.04304.

[5]  C. Grojean,et al.  On the validity of the effective field theory approach to SM precision tests , 2016, 1604.06444.

[6]  M. Schulze,et al.  Pinning down electroweak dipole operators of the top quark , 2016, 1603.08911.

[7]  V. Cirigliano,et al.  Is there room for CP violation in the top-Higgs sector? , 2016, 1603.03049.

[8]  O. B. Bylund,et al.  Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD , 2016, 1601.08193.

[9]  M. Vos,et al.  Constraints on four-fermion interactions from the $$t\bar{t}$$tt¯ charge asymmetry at hadron colliders , 2015, 1512.07542.

[10]  F. Maltoni,et al.  Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on tt¯H$$ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $$ searches at the LHC , 2015, 1507.05640.

[11]  J. Blas,et al.  Renormalization group constraints on new top interactions from electroweak precision data , 2015, 1507.00757.

[12]  Liam Moore,et al.  Global fit of top quark effective theory to data , 2015, 1506.08845.

[13]  F. Richard,et al.  A precise characterisation of the top quark electro-weak vertices at the ILC , 2015, 1505.06020.

[14]  G. Passarino,et al.  NLO Higgs effective field theory and κ-framework , 2015, 1505.03706.

[15]  M. Trott,et al.  Towards consistent Electroweak Precision Data constraints in the SMEFT , 2015, Journal of High Energy Physics.

[16]  M. Schulze,et al.  Probing top-Z dipole moments at the LHC and ILC , 2015, 1501.05939.

[17]  Gauthier Durieux,et al.  Global approach to top-quark flavor-changing interactions , 2014, 1412.7166.

[18]  Jun Gao,et al.  Top quark forward-backward asymmetry in e+ e- annihilation at next-to-next-to-leading order in QCD. , 2014, Physical review letters.

[19]  C. Englert,et al.  Effective theories and measurements at colliders , 2014, 1408.5147.

[20]  Jun Gao,et al.  Electroweak production of top-quark pairs in e + e − annihilation at NNLO in QCD: The vector current contributions , 2014, 1408.5150.

[21]  M. Baak,et al.  The global electroweak fit at NNLO and prospects for the LHC and ILC , 2014, 1407.3792.

[22]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[23]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[24]  Michael Trott,et al.  Renormalization group scaling of Higgs operators and h → γγ decay , 2013, 1301.2588.

[25]  R. Lafaye,et al.  Measuring Higgs couplings at a linear collider , 2013, 1301.1322.

[26]  Claude Duhr,et al.  UFO - The Universal FeynRules Output , 2011, Comput. Phys. Commun..

[27]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[28]  Andy Buckley,et al.  Systematic event generator tuning for the LHC , 2009, The European Physical Journal C.

[29]  Y. Kiyo,et al.  Reconstruction of heavy quark current correlators at O(αs3) , 2009, 0907.2120.

[30]  A. Brachmann,et al.  Polarized positrons and electrons at the linear collider , 2008 .

[31]  J. A. Aguilar-Saavedra,et al.  Probing anomalous Wtb couplings in top pair decays , 2006, hep-ph/0605190.

[32]  R. Bonciani,et al.  Two-parton contribution to the heavy-quark forward-backward asymmetry in NNLO QCD , 2006, hep-ph/0604031.

[33]  A. Pomarol,et al.  The Minimal Composite Higgs Model , 2004, hep-ph/0412089.

[34]  Riccardo Barbieri,et al.  Electroweak symmetry breaking after LEP1 and LEP2 , 2004, hep-ph/0405040.

[35]  A. Pomarol,et al.  Higgs as a holographic pseudo-Goldstone boson , 2003, hep-ph/0306259.

[36]  T. Riemann,et al.  Electroweak one-loop corrections for e+e- annihilation into $t\bar{t}$ including hard bremsstrahlung , 2003, hep-ph/0302259.

[37]  T. Hahn Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2000, hep-ph/0012260.

[38]  T. Hahn,et al.  Automatized One-Loop Calculations in 4 and D dimensions , 1998, hep-ph/9807565.

[39]  Morin,et al.  Effects of top quark compositeness. , 1994, Physical review. D, Particles and fields.

[40]  Takeuchi,et al.  Estimation of oblique electroweak corrections. , 1992, Physical review. D, Particles and fields.

[41]  Takeuchi,et al.  New constraint on a strongly interacting Higgs sector. , 1990, Physical review letters.

[42]  Hikasa Transverse-polarization effects in e+e- collisions: The role of chiral symmetry. , 1986, Physical review. D, Particles and fields.

[43]  H. Nilles,et al.  Supersymmetry, Supergravity and Particle Physics , 1984 .

[44]  M. Veltman,et al.  Neutral currents and the Higgs mechanism , 1975 .

[45]  W. Marsden I and J , 2012 .

[46]  A. Roeck,et al.  Linear Colliders , 1991 .

[47]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .