AI And Early Vision - Part II

A quarter of a century ago I introduced two paradigms into psychology which in the intervening years have had a direct impact on the psychobiology of early vision and an indirect one on artificial intelligence (AI or machine vision). The first, the computer-generated random-dot stereogram (RDS) paradigm (Julesz, 1960) at its very inception posed a strategic question both for AI and neurophysiology. The finding that stereoscopic depth perception (stereopsis) is possible without the many enigmatic cues of monocular form recognition - as assumed previously - demonstrated that stereopsis with its basic problem of finding matches between corresponding random aggregates of dots in the left and right visual fields became ripe for modeling. Indeed, the binocular matching problem of stereopsis opened up an entire field of study, eventually leading to the computational models of David Marr (1982) and his coworkers. The fusion of RDS had an even greater impact on neurophysiologists - including Hubel and Wiesel (1962) - who realized that stereopsis must occur at an early stage, and can be studied easier than form perception. This insight recently culminated in the studies by Gian Poggio (1984) who found binocular-disparity - tuned neurons in the input stage to the visual cortex (layer IVB in V1) in the monkey that were selectively triggered by dynamic RDS. Thus the first paradigm led to a strategic insight: that with stereoscopic vision there is no camouflage, and as such was advantageous for our primate ancestors to evolve the cortical machinery of stereoscopic vision to capture camouflaged prey (insects) at a standstill. Amazingly, although stereopsis evolved relatively late in primates, it captured the very input stages of the visual cortex. (For a detailed review, see Julesz, 1986a)