Biosynthesis of TiO2 nanoparticles using Commelina benghanlensis for the photodegradation of methylene blue dye and antibiotics: Effect of plant concentration

[1]  D. E. Motaung,et al.  Green synthesis of ZnO: Effect of plant concentration on the morphology, optical properties and photodegradation of dyes and antibiotics in wastewater , 2022, Optik.

[2]  R. Su,et al.  Indirect photodegradation of sulfisoxazole: Effects of environmental factors (CDOM, pH, salinity, HCO3-, metal ions, halogen ions and NO3-). , 2022, Marine pollution bulletin.

[3]  Naphatsakorn Orachorn,et al.  Nanohybrid magnetic composite optosensing probes for the enrichment and ultra-trace detection of mafenide and sulfisoxazole. , 2021, Talanta.

[4]  H. Swart,et al.  TiO2 Nanowires for Humidity-Stable Gas Sensors for Toluene and Xylene , 2021 .

[5]  N. Hintsho-Mbita,et al.  Biosynthesis of titanium dioxide nanoparticles for the photodegradation of dyes and removal of bacteria , 2020 .

[6]  Arashdeep Singh,et al.  Structural, morphological, optical and photocatalytic properties of green synthesized TiO2 NPs , 2020, Current Research in Green and Sustainable Chemistry.

[7]  S. Mishra,et al.  Smart pathways for the photocatalytic degradation of sulfamethoxazole drug using F-Pd co-doped TiO2 nanocomposites , 2020, Applied Catalysis B: Environmental.

[8]  T. Shoeib,et al.  Novel approach for effective removal of methylene blue dye from water using fava bean peel waste , 2020, Scientific Reports.

[9]  S. Senapati,et al.  Green synthesis of TiO2 nanoparticles using Bixa orellana seed extract and its application for solar cells , 2019, Solar Energy.

[10]  A. Alshehri,et al.  Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation , 2019, Journal of Materials Science: Materials in Electronics.

[11]  H. Kaur,et al.  Expanding horizon: green synthesis of TiO2 nanoparticles using Carica papaya leaves for photocatalysis application , 2019, Materials Research Express.

[12]  B. Ntsendwana,et al.  ZnO nanoparticles via Sutherlandia frutescens plant extract: physical and biological properties , 2019, Materials Research Express.

[13]  H. Qian,et al.  Removal of Sulfonamides in Water Using an Electro/Peroxydisulfate System Catalyzed with Activated Carbon , 2019, Polish Journal of Environmental Studies.

[14]  R. Sundaram,et al.  Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications , 2019, Materials Today: Proceedings.

[15]  S. Wacławek,et al.  Green Synthesis of High Temperature Stable Anatase Titanium Dioxide Nanoparticles Using Gum Kondagogu: Characterization and Solar Driven Photocatalytic Degradation of Organic Dye , 2018, Nanomaterials.

[16]  Hao Yi,et al.  Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent , 2018, Applied Surface Science.

[17]  T. Uhlemann,et al.  Site-specific binding of a water molecule to the sulfa drugs sulfamethoxazole and sulfisoxazole: a laser-desorption isomer-specific UV and IR study. , 2018, Physical chemistry chemical physics : PCCP.

[18]  R. Bharagava,et al.  Green synthesis of TiO 2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater , 2018 .

[19]  T. Uyar,et al.  Polymer-free electrospun nanofibers from sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD) inclusion complex with sulfisoxazole: Fast-dissolving and enhanced water-solubility of sulfisoxazole. , 2017, International journal of pharmaceutics.

[20]  K. Parida,et al.  Green synthesis of Au/TiO2 for effective dye degradation in aqueous system , 2013 .

[21]  M. Fujii,et al.  Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. , 2013, Nanoscale.

[22]  D. Barceló,et al.  Ecotoxicity evaluation and removal of sulfonamides and their acetylated metabolites during conventional wastewater treatment. , 2012, The Science of the total environment.

[23]  K. V. Shetty,et al.  Removal of Remazol Brilliant Blue Dye from Dye-Contaminated Water by Adsorption Using Red Mud: Equilibrium, Kinetic, and Thermodynamic Studies , 2012, Water, Air, & Soil Pollution.

[24]  Wei Liu,et al.  High magnetic field annealing effect on visible photoluminescence enhancement of TiO2 nanotube arrays , 2012 .

[25]  Thou-Jen Whang,et al.  Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles , 2012 .

[26]  C. Basha,et al.  Electro-degradation and biological oxidation of non-biodegradable organic contaminants , 2009 .

[27]  Md. Akhtarul Islam,et al.  Adsorptive removal of methylene blue by tea waste. , 2009, Journal of hazardous materials.

[28]  I. Ahmad,et al.  New strategies combating bacterial infection. , 2008 .

[29]  Tao Chen,et al.  Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture , 2007 .

[30]  K Santhy,et al.  Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. , 2006, Bioresource technology.

[31]  N. S. Tabrizi,et al.  Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies. , 2005, Journal of colloid and interface science.

[32]  Vinod K. Gupta,et al.  Removal of Dyes from Wastewater Using Bottom Ash , 2005 .

[33]  M. Nieuwenhuijsen,et al.  Contaminants in drinking water. , 2003, British medical bulletin.

[34]  Walter Giger,et al.  Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges, and surface waters , 2003 .