Systemics of Emergence: Research and Development
暂无分享,去创建一个
A research program whose objective is to study uncertainty and uncertaintybased information in all their manifestations was introduced in the early 1990's under the name "generalized information theory" (GIT). This research program, motivated primarily by some fundamental methodological issues emerging from the study of complex systems, is based on a two-dimensional expansion of classical, probability-based information theory. In one dimension, additive probability measures, which are inherent in classical information theory, are expanded to various types of nonadditive measures. In the other dimension, the formalized language of classical set theory, within which probability measures are formalized, is expanded to more expressive formalized languages that are based on fuzzy sets of various types. As in classical information theory, uncertainty is the primary concept in GIT and information is defined in terms of uncertainty reduction. This restricted interpretation of the concept of information is described in GIT by the qualified term "uncertainty-based information". Each uncertainty theory that is recognizable within the expanded framework is characterized by: (i) a particular formalized language (a theory of fiizzy sets of some particular type); and (ii) a generalized measure of some particular type (additive or nonadditive). The number of possible uncertainty theories is thus equal to the product of the number of recognized types of fuzzy sets and the number of recognized types of generalized measures. This number has been growing quite rapidly with the recent developments in both fuzzy set theory and the theory of generalized measures. In order to fully develop any of these theories of uncertainty requires that issues at each of the following four levels be adequately addressed: (i) the theory must be formalized in terms of appropriate axioms; (ii) a calculus of the theory must be developed by which the formalized uncertainty is manipulated within the theory; (iii) a justifiable way of measuring the amount of relevant uncertainty (predictive, diagnostic, etc.) in any situation formalizable in the theory must be found; and (iv) various methodological aspects of the theory must be developed. Among the many