Precise and fast computation of Lambert W-functions without transcendental function evaluations
暂无分享,去创建一个
[1] François Chapeau-Blondeau,et al. Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2 , 2002, IEEE Trans. Signal Process..
[2] S. Pudasaini. Some exact solutions for debris and avalanche flows , 2011 .
[3] Tony C. Scott,et al. Nodal surfaces of helium atom eigenfunctions , 2007 .
[4] T. Fukushima. A Method Solving Kepler’s Equation for Hyperbolic Case , 1997 .
[5] Sun Yi,et al. Time-Delay Systems: Analysis and Control Using the Lambert W Function , 2010 .
[6] Toshio Fukushima,et al. A method solving kepler's equation without transcendental function evaluations , 1996 .
[7] Tony C. Scott,et al. Resolution of a paradox in the calculation of exchange forces for H+2 , 1993 .
[8] A. Householder. The numerical treatment of a single nonlinear equation , 1970 .
[9] Tony C. Scott,et al. The calculation of exchange forces: General results and specific models , 1993 .
[10] Stephen Wolfram,et al. The Mathematica Book , 1996 .
[11] Toshio Fukushima,et al. Numerical inversion of a general incomplete elliptic integral , 2013, J. Comput. Appl. Math..
[12] William H. Press,et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .
[13] Ove Steinvall. Laser system range calculations and the Lambert W function. , 2009, Applied optics.
[14] J. Caillol. Some applications of the Lambert W function to classical statistical mechanics , 2003, cond-mat/0306562.
[15] F. Fritsch,et al. Solution of the transcendental equation wew = x , 1973, CACM.
[16] J. E. Glynn,et al. Numerical Recipes: The Art of Scientific Computing , 1989 .
[17] A. Galip Ulsoy,et al. Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter. , 2007, Mathematical biosciences and engineering : MBE.
[18] R. Shankar,et al. Principles of Quantum Mechanics , 2010 .
[19] Darko Veberic,et al. Lambert W Function for Applications in Physics , 2012, Comput. Phys. Commun..
[20] Gaston H. Gonnet,et al. On the LambertW function , 1996, Adv. Comput. Math..